6 resultados para Three-dimensional culture
em Universidade do Minho
Resumo:
Objective To determine whether the use of 3-dimensional (3D) imaging translates into a better surgical performance of naïve urologic laparoscopic surgeons during pyeloplasty (PY) and partial nephrectomy (PN) procedures. Materials and Methods Eighteen surgeons without any previous laparoscopic experience were randomly assigned to perform PY and PN in a porcine model using initially 2-dimensional (2D) and 3D laparoscopy. A surgical performance score was rated by an "expert" tutor through a modified 5-item global rating scale contemplating operative field view, bimanual dexterity, efficiency, tissue handling, and autonomy. Overall surgical time, complications, subjective perception of participating surgeons, and inconveniences related to the 3D vision were recorded. Results No difference in terms if operative time was found between 2D or 3D laparoscopy for both the PY (P =.51) and the PN (P =.28) procedures. A better rate in terms of surgical performance score was noted by the tutors when the study participants were using 3D vs 2D, for both PY (3.6 [0.8] vs 3.0 [0.4]; P =.034) and PN (3.6 [0.51] vs 3.15 [0.63]; P =.001). No complications occurred in any of the procedures. Most (77.2%) of the participating na??ve laparoscopic surgeons had the perception that 3D laparoscopy was overall easier than 2D. Headache (18.1%), nausea (18.1%), and visual disturbance (18.1%) were the most common issues reported by the surgeons during 3D procedures. Conclusion Despite the absence of translation in a shorter operative time, the use of 3D technology seems to facilitate the surgical performance of naive surgeons during laparoscopic kidney procedures on a porcine model.
Resumo:
Specific tissues, such as cartilage undergo mechanical solicitation under their normal performance in human body. In this sense, it seems necessary that proper tissue engineering strategies of these tissues should incorporate mechanical solicitations during cell culture, in order to properly evaluate the influence of the mechanical stimulus. This work reports on a user-friendly bioreactor suitable for applying controlled mechanical stimulation - amplitude and frequency - to three dimensional scaffolds. Its design and main components are described, as well as its operation characteristics. The modular design allows easy cleaning and operating under laminar hood. Different protocols for the sterilization of the hermetic enclosure are tested and ensure lack of observable contaminations, complying with the requirements to be used for cell culture. The cell viability study was performed with KUM5 cells.
Resumo:
Cell/cell-extracellular matrix (ECM) dynamic interactions appear to have a major role in regulating communication through soluble signaling, directing cell binding and activating substrates that participate in the highly organized wound healing process. Moreover, these interactions are also crucial for in vitro mimicking cutaneous physiology. Herein we explore cell sheet (CS) engineering to create cellular constructs formed by keratinocytes (hKC), fibroblasts (hDFB) and dermal microvascular endothelial cells (hDMEC), to target skin wound healing but also the in vitro recreation of relevant models. Taking advantage of temperature-responsive culture surfaces, which allow harvesting cultured cells as intact sheets along with the deposited native ECM, varied combinations of homotypic and heterotypic three-dimensional (3-D) CS-based constructs were developed. Constructs combining one CS of keratinocytes as an epidermis-like layer plus a vascularized dermis composed by hDFB and hDMECs were assembled as skin analogues for advancing in vitro testing. Simultaneously both hKC and hDMEC were shown to significantly contribute to the re-epithelialization of full-thickness mice skin wounds by promoting an early epithelial coverage, while hDMEC significantly lead to increased vessels density, incorporating the neovasculature. Thus, although determined by the cellular nature of the constructs, these outcomes demonstrated that CS engineering appear as an unique technology that open the possibility to create numerous combinations of 3D constructs to target defective wound healing as well as the construction of in vitro models to further mimic cutaneous functions crucial for drug screening and cosmetic testing assays.
Resumo:
Tese de Doutoramento em Ciências (área de especialização em Química)
Resumo:
The present study aimed to investigate the effect of structure (design and porosity) on the matrix stiffness and osteogenic activity of stem cells cultured on poly(ester-urethane) (PEU) scaffolds. Different three-dimensional (3D) forms of scaffold were prepared from lysine-based PEU using traditional salt-leaching and advanced bioplotting techniques. The resulting scaffolds were characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), mercury porosimetry and mechanical testing. The scaffolds had various pore sizes with different designs, and all were thermally stable up to 300â °C. In vitrotests, carried out using rat bone marrow stem cells (BMSCs) for bone tissue engineering, demonstrated better viability and higher cell proliferation on bioplotted scaffolds compared to salt-leached ones, most probably due to their larger and interconnected pores and stiffer nature, as shown by higher compressive moduli, which were measured by compression testing. Similarly, SEM, von Kossa staining and EDX analyses indicated higher amounts of calcium deposition on bioplotted scaffolds during cell culture. It was concluded that the design with larger interconnected porosity and stiffness has an effect on the osteogenic activity of the stem cells.