5 resultados para Thermal treatment
em Universidade do Minho
Resumo:
Dissertação de mestrado em Engenharia de Materiais
Resumo:
Bovine α-lactalbumin (α-La) and lysozyme (Lys), two globular proteins with highly homologous tertiary structures and opposite isoelectric points, were used to produce bio-based supramolecular structures under various pH values (3, 7 and 11), temperatures (25, 50 and 75 °C) and times (15, 25 and 35 min) of heating. Isothermal titration calorimetry experiments showed protein interactions and demonstrated that structures were obtained from the mixture of α-La/Lys in molar ratio of 0.546. Structures were characterized in terms of morphology by transmission electron microscopy (TEM) and dynamic light scattering (DLS), conformational structure by circular dichroism and intrinsic fluorescence spectroscopy and stability by DLS. Results have shown that protein conformational structure and intermolecular interactions are controlled by the physicochemical conditions applied. The increase of heating temperature led to a significant decrease in size and polydispersity (PDI) of α-La–Lys supramolecular structures, while the increase of heating time, particularly at temperatures above 50 °C, promoted a significant increase in size and PDI. At pH 7 supramolecular structures were obtained at microscale – confirmed by optical microscopy – displaying also a high PDI (i.e. > 0.4). The minimum size and PDI (61 ± 2.3 nm and 0.14 ± 0.03, respectively) were produced at pH 11 for a heating treatment of 75 °C for 15 min, thus suggesting that these conditions could be considered as critical for supramolecular structure formation. Its size and morphology were confirmed by TEM showing a well-defined spherical form. Structures at these conditions showed to be stable at least for 30 or 90 days, when stored at 25 or 4 °C, respectively. Hence, α-La–Lys supramolecular structures showed properties that indicate that they are a promising delivery system for food and pharmaceutical applications.
Resumo:
Formation of whey protein isolate protein aggregates under the influence of moderate electric fields upon ohmic heating (OH) has been monitored through evaluation of molecular protein unfolding, loss of its solubility, and aggregation. To shed more light on the microstructure of the protein aggregates produced by OH, samples were assayed by transmission electron microscopy (TEM). Results show that during early steps of an OH thermal treatment, aggregation of whey proteins can be reduced with a concomitant reduction of the heating chargeby reducing the come-up time (CUT) needed to reach a target temperatureand increase of the electric field applied (from 6 to 12 V cm1). Exposure of reactive free thiol groups involved in molecular unfolding of -lactoglobulin (-lg) can be reduced from 10 to 20 %, when a CUT of 10 s is combined with an electric field of 12 V cm1. Kinetic and multivariate analysis evidenced that the presence of an electric field during heating contributes to a change in the amplitude of aggregation, as well as in the shape of the produced aggregates. TEM discloses the appearance of small fibrillar aggregates upon the influence of OH, which have recognized potential in the functionalization of food protein networks. This study demonstrated that OH technology can be used to tailor denaturation and aggregation behavior of whey proteins due to the presence of a constant electric field together with the ability to provide a very fast heating, thus overcoming heat transfer limitations that naturally occur during conventional thermal treatments.
Resumo:
This paper reports the first attempt of characterizing various physical, mechanical and chemical properties of Quiscal fibres, used by the native communities in Chile and investigating the influence of atmospheric dielectric barrier discharge plasma treatment on various properties such as diameter and linear density, fat, wax and impurity%, moisture regain, chemical elements and groups, thermal degradation, surface morphology, etc. According to the experimental observations, Quiscal fibre has lower tenacity than most of the technical grade natural fibres such as sisal, hemp, flax, etc., and plasma treatment at optimum dose improved its tenacity to the level of sisal fibres. Plasma treatment also reduced the amount of fat, wax and other foreign impurities present in Quiscal fibres as well as removed lignin and hemicellulose partially from the fibre structure. Plasma treatment led to functionalization of Quiscal fibre surface with chemical groups, as revealed from attenuated total reflection spectroscopy and also confirmed from the elemental analysis using energy dispersive Xray technique and pH and conductivity measurements of fibre aqueous extract. The wetting behavior of Quiscal fibre also improved considerably through plasma treatment. However, untreated and plasma treated Quiscal fibres showed similar thermal degradation behavior, except the final degradation stage, in which plasma treated fibres showed higher stability and incomplete degradation unlike the untreated fibres. The experimental results suggested that the plasma treated Quiscal fibres, like other technical grade natural fibres, can find potential application as reinforcement of composite materials for various industrial applications.
Resumo:
This paper reports the first attempt of characterizing several physical, mechanical and chemical properties of Quiscal fibres, usually used by the native communities in Chile and on investigations concerning the influence of atmospheric dielectric barrier discharge (DBD) plasma treatment on various properties such as diameter and linear density, percent of impurity, moisture regain, chemical elements and groups, thermal degradation, surface morphology, among others.