17 resultados para Termogravimetria (TGA)
em Universidade do Minho
Resumo:
In this study, a high-performance composite was prepared from jute fabrics and polypropylene (PP). In order to improve the compatibility of the polar fibers and the non-polar matrix, alkyl gallates with different hydrophobic groups were enzymatically grafted onto jute fabric by laccase to increase the surface hydrophobicity of the fiber. The grafting products were characterized by FTIR. The results of contact angle and wetting time showed that the hydrophobicity of the jute fabrics was improved after the surface modification. The effect of the enzymatic graft modification on the properties of the jute/PP composites was evaluated. Results showed that after the modification, tensile and dynamic mechanical properties of composites improved, and water absorption and thickness swelling clearly decreased. However, tensile properties drastically decreased after a long period of water immersion. The thermal behavior of the composites was evaluated by TGA/DTG. The fiber-matrix morphology in the modified jute/PP composites was confirmed by SEM analysis of the tensile fractured specimens.
Resumo:
CH, Chitosan; HPMC, (Hydroxypropyl)methyl cellulose; FT, Freeze-thaw; SC, Solvent casting; CH:HPMC (X:Y), pH Z, FT/SC, Chitosan and (hydroxypropyl)methyl cellulose hydrogel, at X and Y proportion (0-100), at Z pH (3.0-4.0) and prepared by freeze-thaw or solvent casting techniques; DSC, Differential scanning calorimetry; MDSC, Temperature modulated Differential scanning calorimetry; Tg, glass transition temperature; ΔH, enthalpy change; TGA, Thermogravimetric Analysis; TG, Thermogravimetry; DTG, Derivative or Differential thermogravimetry; σ, Tensile strength; ε, elongation at break; DMA, Dynamic mechanical analysis; X-Ray, X-radiation, FTIR-ATR, Attenuated total reflectance Fourier transform infrared spectroscopy; SEM, Scanning electron microscopy.
Resumo:
CH, Chitosan; HPMC, (Hydroxypropyl)methyl cellulose; FT, Freeze-thaw; SC, Solvent casting; CH:HPMC (X:Y), pH Z, FT/SC, Chitosan and (hydroxypropyl)methyl cellulose hydrogel, at X and Y proportion (0-100), at Z pH (3.0-4.0) and prepared by freeze-thaw or solvent casting techniques; DSC, Differential scanning calorimetry; MDSC, Temperature modulated Differential scanning calorimetry; Tg, glass transition temperature; ΔH, enthalpy change; TGA, Thermogravimetric Analysis; TG, Thermogravimetry; DTG, Derivative or Differential thermogravimetry; σ, Tensile strength; ε, elongation at break; DMA, Dynamic mechanical analysis; X-Ray, X-radiation, FTIR-ATR, Attenuated total reflectance Fourier transform infrared spectroscopy; SEM, Scanning electron microscopy.
Resumo:
Magnetoelectric microspheres based on piezoelectric poly(vinylidene fluoride) (PVDF) and magnetrostrictive CoFe2O4 (CFO), a novel morphology for polymer-based ME material, have been developed by an electrospray process. The CFO nanoparticles content in the (3-7 μm diameter) microspheres reaches values up to 27 wt.%, despite their concentration in the starting solution reaching values up to 70 wt.%. Additionally, the inclusion of magnetostrictive nanoparticles into the polymer spheres has no relevant effect on the piezoelectric β-phase content (≈60%), crystallinity (40%) and the onset degradation temperature (460º-465ºC) of the polymer matrix. The multiferroic microspeheres show a maximum piezoelectric reponse |d33|≈30 pC.N-1, leading to a magnetoelectric response of Δ|d33|≈5 pC.N-1 obtained when a 220 mT DC magnetic field was applied. It is also shown that the interface between CFO nanoparticles and PVDF (from 0 to 55%) has a strong influence on the ME response of the microspheres. The simplicity and the scalability of the processing method suggest a large application potential of this novel magnetoelectric geometry in areas such as tissue engineering, sensors and actuators.
Resumo:
The employ of vegetal fibers for textiles and composites represents a great potential in economic and social sustainable development. Some Malvaceae species are considered tropical cosmopolitans, such as from Sida genus. Several species of this genus provide excellent textile bast fibers, which are very similar in qualities to the jute textile fiber. The objective of the present study is present the physicochemical characterization of six Brazilian vegetal fibers: Sida rhombifolia L.; Sida carpinifolia L. f.; Sidastrum paniculatum (L.) Fryxell; Sida cordifolia L.; Malvastrum coromandelianum (L.) Gurck; Wissadula subpeltata (Kuntze) R.E.Fries. Respectively the two first species are from Brazilian Atlantic Forest biome and the four remaining from Brazilian Cerrado biome, despite of present in other regions of the planet. The stems of these species were retted in water at 37oC for 20 days. The fibers were tested in order to determine tensile rupture strength, tenacity, elongation, Young’s modulus, cross microscopic structure, Scanning Electronic Microscopy (SEM), regain, combustion, acid, alkali, organic solvent and cellulase effects, pH of the aqueous extract, Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). The obtained values were compared with those from fibers of recognized applicability in the textile industry including hemp. The results are promising in terms of their employment in thermoset and thermoplastic medium resistance composites.
Resumo:
Las fibras del seudotallo de plátano (FSP) fueron modificadas mediante epiclorhidrina (EP), anhídrido acético (AA), y su combinación (AA_EP), y con plasma a tres descargas de barrera dieléctrica (DBD) 1, 3 y 6 kW min m-2. Las FSP tratadas y sin tratar fueron caracterizadas mediante espectroscopia infrarroja por la transformada de Fourier (FT-IR), termogravimetría (TGA), microscopía electrónica de barrido (SEM) y pruebas mecánicas de tensión y de humectabilidad. Los espectros FT-IR, las micrografías SEM, y el análisis TGA indicaron pérdidas de lignina, hemicelulosa, impurezas y ceras. Estos efectos en conjunto con las reacciones de grupos OH y -C-C-, con los tratamientos químicos y de plasma respectivamente, incrementaron la hidrofobicidad de las FSP tratadas. Los tratamientos químicos produjeron reacciones de esterificación, eterificación y entrecruzamiento de los grupos OH libres en las FSP, lo que hizo que mostraran mayor rigidez que las expuestas al plasma. Las micrografías SEM mostraron que las FSP expuestas al plasma quedaron con superficie más irregular y rugosa que la de las FSP tratadas químicamente. La humectabilidad de las fibras, medida mediante pruebas de ángulo de contacto, se redujo como consecuencia de ambos tratamientos, característica importante para un relleno en los materiales compuestos.
Resumo:
Dissertação de mestrado integrado em Engenharia de Materiais
Resumo:
Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Biomateriais, Reabilitação e Biomecânica)
Resumo:
Dissertação de mestrado integrado em Engenharia de Materiais
Resumo:
Solid polymer electrolytes (SPEs) were obtained from chitosan plasticized with glycerol and contained europium (III) trifluoromethanesulfonate salt. The transparent samples were characterized by thermal analysis (DSC and TGA), impedance spectroscopy and electron paramagnetic resonance (EPR). The sample with 55.34 wt.% of europium triflate showed the best ionic conductivity of 1.52 × 10−6 and 7.66 × 10−5 S cm−1 at 30°C and 80°C, respectively. The thermal analysis revealed that the degradation started at around 130–145°C and the weight loss ranged from 20 to 40%. The DSC of the samples showed no Tg, but only a large endothermic peak that was centered between 160 and 200 °C. The EPR analysis showed a broadening of the EPR resonance lines with increasing europium contents in the chitosan membranes due to the magnetic dipole–dipole coupling and spin–spin exchange between the Eu2+ ions. Moreover, the electrolytes based on chitosan and europium triflate presented good flexibility, homogeneity, and transparency.
Resumo:
New polymer electrolytes (PEs) based on chitosan and three ionic liquid (IL) families ([C2mim][CnSO3], [C2mim][CnSO4] and [C2mim][diCnPO4]) were synthesized by the solvent casting method. The effect of the length of the alkyl chain of the IL anion on the thermal, morphological and electrochemical properties of the PEs was studied. The solid polymer electrolytes (SPE) membranes were analyzed by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), polarized optical microscopy (POM), atomic force microscopy (AFM), complex impedance spectroscopy (ionic conductivity) and cyclic voltammetry (CV). The obtained results evidenced an influence of the alkyl chain length of the IL anion on the temperature of degradation, birefringence, surface roughness and ionic conductivity of the membranes. The DSC, XRD and CV results showed independency from the length of the IL-anion-alkyl chain. The PEs displayed an predominantly amorphous morphology, a minimum temperature of degradation of 135 °C, a room temperature (T = 25 °C) ionic conductivity of 7.78 × 10−4 S cm−1 and a wide electrochemical window of ∼ 4.0 V.
Resumo:
Dissertação de mestrado integrado em Engenharia de Materiais
Resumo:
The potential of salicylic acid (SA) encapsulated in porous materials as drug delivery carriers for cancer treatment was studied. Different porous structures, the microporous zeolite NaY, and the mesoporous SBA-15 and MCM-41 were used as hosts for the anti-inflammatory drug. Characterization with different techniques (FTIR, UV/vis, TGA, 1H NMR, and 13C CPMAS NMR) demonstrated the successful loading of SA into the porous hosts. The mesoporous structures showed to be very efficient to encapsulate the SA molecule. The obtained drug delivery systems (DDS) accommodated 0.74 mmol (341 mg/gZEO) in NaY and 1.07 mmol (493 mg/gZEO) to 1.23 mmol (566 mg/gZEO) for SBA-15 and MCM-41, respectively. Interactions between SA molecules and pore structures were identified. A fast and unrestricted liberation of SA at 10 min of the dissolution assay was achieved with 29.3, 46.6, and 50.1 µg/mL of SA from NaY, SBA-15, and MCM-41, respectively, in the in vitro drug release studies (PBS buffer pH 7.4, 37 °C). Kinetic modeling was used to determine the release patterns of the DDS. The porous structures and DDS were evaluated on Hs578T and MDA-MB-468 breast cancer cell lines viability. The porous structures are nontoxic to cancer cells. Cell viability reduction was only observed after the release of SA from MCM- 41 followed by SBA-15 in both breast cancer cell lines.
Resumo:
The present study aimed to investigate the effect of structure (design and porosity) on the matrix stiffness and osteogenic activity of stem cells cultured on poly(ester-urethane) (PEU) scaffolds. Different three-dimensional (3D) forms of scaffold were prepared from lysine-based PEU using traditional salt-leaching and advanced bioplotting techniques. The resulting scaffolds were characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), mercury porosimetry and mechanical testing. The scaffolds had various pore sizes with different designs, and all were thermally stable up to 300â °C. In vitrotests, carried out using rat bone marrow stem cells (BMSCs) for bone tissue engineering, demonstrated better viability and higher cell proliferation on bioplotted scaffolds compared to salt-leached ones, most probably due to their larger and interconnected pores and stiffer nature, as shown by higher compressive moduli, which were measured by compression testing. Similarly, SEM, von Kossa staining and EDX analyses indicated higher amounts of calcium deposition on bioplotted scaffolds during cell culture. It was concluded that the design with larger interconnected porosity and stiffness has an effect on the osteogenic activity of the stem cells.
Resumo:
In search to increase the offer of liquid, clean, renewable and sustainable energy in the world energy matrix, the use of lignocellulosic materials (LCMs) for bioethanol production arises as a valuable alternative. The objective of this work was to analyze and compare the performance of Saccharomyces cerevisiae, Pichia stipitis and Zymomonas mobilis in the production of bioethanol from coconut fibre mature (CFM) using different strategies: simultaneous saccharification and fermentation (SSF) and semi-simultaneous saccharification and fermentation (SSSF). The CFM was pretreated by hydrothermal pretreatment catalyzed with sodium hydroxide (HPCSH). The pretreated CFM was characterized by X-ray diffractometry and SEM, and the lignin recovered in the liquid phase by FTIR and TGA. After the HPCSH pretreatment (2.5% (v/v) sodium hydroxide at 180 °C for 30 min), the cellulose content was 56.44%, while the hemicellulose and lignin were reduced 69.04% and 89.13%, respectively. Following pretreatment, the obtained cellulosic fraction was submitted to SSF and SSSF. Pichia stipitis allowed for the highest ethanol yield 90.18% in SSSF, 91.17% and 91.03% were obtained with Saccharomyces cerevisiae and Zymomonas mobilis, respectively. It may be concluded that the selection of the most efficient microorganism for the obtention of high bioethanol production yields from cellulose pretreated by HPCSH depends on the operational strategy used and this pretreatment is an interesting alternative for add value of coconut fibre mature compounds (lignin, phenolics) being in accordance with the biorefinery concept.