10 resultados para Temperatures and wind
em Universidade do Minho
Resumo:
Hybrid Composite Plate (HCP) is a reliable recently proposed retrofitting solution for concrete structures, which is composed of a strain hardening cementitious composite (SHCC) plate reinforced with Carbon Fibre Reinforced Polymer (CFRP). This system benefits from the synergetic advantages of these two composites, namely the high ductility of SHCC and the high tensile strength of CFRPs. In the materialstructural of HCP, the ultra-ductile SHCC plate acts as a suitable medium for stress transfer between CFRP laminates (bonded into the pre-sawn grooves executed on the SHCC plate) and the concrete substrate by means of a connection system made by either chemical anchors, adhesive, or a combination thereof. In comparison with traditional applications of FRP systems, HCP is a retrofitting solution that (i) is less susceptible to the detrimental effect of the lack of strength and soundness of the concrete cover in the strengthening effectiveness; (ii) assures higher durability for the strengthened elements and higher protection to the FRP component in terms of high temperatures and vandalism; and (iii) delays, or even, prevents detachment of concrete substrate. This paper describes the experimental program carried out, and presents and discusses the relevant results obtained on the assessment of the performance of HCP strengthened reinforced concrete (RC) beams subjected to flexural loading. Moreover, an analytical approach to estimate the ultimate flexural capacity of these beams is presented, which was complemented with a numerical strategy for predicting their load-deflection behaviour. By attaching HCP to the beams’ soffit, a significant increase in the flexural capacity at service, at yield initiation of the tension steel bars and at failure of the beams can be achieved, while satisfactory deflection ductility is assured and a high tensile capacity of the CFRP laminates is mobilized. Both analytical and numerical approaches have predicted with satisfactory agreement, the load-deflection response of the reference beam and the strengthened ones tested experimentally.
Resumo:
Dissertação de mestrado integrado em Materials Engineering
Resumo:
This work focused on how different types of oil phase, MCT (medium chain triglycerides) and LCT (long chain triglycerides), exert influence on the gelation process of beeswax and thus properties of the organogel produced thereof. Organogels were produced at different temperatures and qualitative phase diagrams were constructed to identify and classify the type of structure formed at various compositions. The microstructure of gelator crystals was studied by polarized light microscopy. Melting and crystallization were characterized by differential scanning calorimetry and rheology (flow and small amplitude oscillatory measurements) to understand organogels' behaviour under different mechanical and thermal conditions. FTIR analysis was employed for a further understanding of oil-gelator chemical interactions. Results showed that the increase of beeswax concentration led to higher values of storage and loss moduli (G, G) and complex modulus (G*) of organogels, which is associated to the strong network formed between the crystalline gelator structure and the oil phase. Crystallization occurred in two steps (well evidenced for higher concentrations of gelator) during temperature decreasing. Thermal analysis showed the occurrence of hysteresis between melting and crystallization. Small angle X-ray scattering (SAXS) analysis allowed a better understanding in terms of how crystal conformations were disposed for each type of organogel. The structuring process supported by medium or long-chain triglycerides oils was an important exploit to apprehend the impact of different carbon chain-size on the gelation process and on gels' properties.
Resumo:
This study aims to develop an innovative bitumen with large quantities of waste materials to improve asphalt mixtures performance. Different amounts of waste motor oil and waste HDPE were added to a new bitumen. The bitumen modified with 10% of waste motor oil and 5% of HDPE showed promising characteristics (high softening point temperatures and penetration slightly higher than the conventional bitumen). After the selection of the most promising modified bitumen, three asphalt mixtures were produced with different bitumens (namely conventional bitumen, commercial modified bitumen and the selected modified bitumen). Beyond that, this modified bitumen improved some mechanical characteristics of the asphalt mixture where it was used, in comparison to conventional and modified asphalt mixtures.
Resumo:
The increasing environmental concern about waste materials and the necessity of improving the performance of asphalt mixtures prompted the study of incorporating different waste materials in conventional bitumen. The reuse of waste materials can present benefits at an environmental and economic level, and some wastes can be used to improve the pavement performance. Thus, the purpose of this study is to evaluate the incorporation of different waste materials in bitumen, namely waste motor oil and different polymers. In order to accomplish this goal, 10% of waste motor oil and 5% of polymers (high density polyethylene, crumb rubber and styrene-butadiene-styrene) were added to a conventional bitumen and the resulting modified bitumens were characterized through basic and rheological tests. From this work, it can be concluded that the incorporation of different waste materials improve some important properties of the conventional bitumen. Such improvements might indicate a good behaviour at medium/high temperatures and an increase of fatigue and rutting resistance. Therefore, these modified bitumens with waste materials can contribute to a sustainable development of road paving industry due to their performance and environmental advantages.
Resumo:
With the constant need to improve and make the production of asphalt mixtures more sustainable, new production techniques have been developed, the implementation of which implies the correct knowledge of their performance. One of the most promising asphalt production techniques is the use of foamed bitumen. However, it is essential to understand how this binder will behave when subject to the expansion process. The loss of volume of the foamed bitumen could be translated by a decay curve, which allows to determine the ideal temperature and water content added to the bitumen in order to assure adequate conditions to the mix the bitumen with the aggregates. On the present study, a conventional 160/220 pen grade bitumen was tested by using different temperatures and water contents, and it was concluded that the optimum temperature for the production of foamed bitumen (with the studied bitumen) is 150 ºC, which corresponds to a viscosity of 0.1 Pa.s. The water content mostly influence the half-life of the bitumen foam, resulting in quicker volume reductions for higher water contents.
Resumo:
Dissertação de mestrado integrado em Engenharia Eletrónica Industrial e de Computadores
Resumo:
Dissertação de mestrado integrado em Materials Engineering
Resumo:
Dissertação de mestrado integrado em Engenharia Civil
Resumo:
Dissertação de mestrado em Arqueologia