15 resultados para Technology-based self-service

em Universidade do Minho


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The extracellular matrix (ECM) of tissues is an assembly of insoluble macromolecules that specifically interact with soluble bioactive molecules and regulate their distribution and availability to cells. Recapitulating this ability has been an important target in controlled growth factor delivery strategies for tissue regeneration and requires the design of multifunctional carriers. This review describes the integration of supramolecular interactions on the design of delivery strategies that encompass self-assembling and engineered affinity components to construct advanced biomimetic carriers for growth factor delivery. Several glycan- and peptide-based self-assemblies reported in the literature are highlighted and commented upon. These examples demonstrate how molecular design and chemistry are successfully employed to create versatile multifunctional molecules which self-assemble/disassemble in a precisely predicted manner, thus controlling compartmentalization, transport and delivery. Finally, we discuss whether recent advances in the design and preparation of supramolecular delivery systems have been sufficient to drive real translation towards a clinical impact. 

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The supercritical fluid technology has been target of many pharmaceuticals investigations in particles production for almost 35 years. This is due to the great advantages it offers over others technologies currently used for the same purpose. A brief history is presented, as well the classification of supercritical technology based on the role that the supercritical fluid (carbon dioxide) performs in the process.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Supramolecular hydrogels rely on small molecules that self-assemble in water as a result of the cooperative effect of several relatively weak intermolecular interactions. Peptide-based low molecular weight hydrogelators have attracted enormous interest owing to the simplicity of small molecules combined with the versatility and biocompatibility of peptides. In this work, naproxen, a well known non-steroidal anti-inflammatory drug, was N-conjugated with various dehydrodipeptides to give aromatic peptide amphiphiles that resist proteolysis. Molecular dynamics simulations were used to obtain insight into the underlying molecular mechanism of self-assembly and to rationalize the design of this type of hydrogelators. The results obtained were in excellent agreement with the experimental observations. Only dehydrodipeptides having at least one aromatic amino acid gave hydrogels. The characterization of the hydrogels was carried out using transmission electron microscopy (TEM), circular dichroism (CD), fluorescence spectroscopy and also rheological assays.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The future of the construction industry will require changes at many levels. One is the ability of companies to adapt to new challenges, converting needs to opportunities and simultaneously contributing to the solving of social and environmental problems. In the coming decades we will see a change in attitude in the industry, with a strong tendency to adopt natural and recycled materials, as well as bet on green technology and social innovation oriented to emerging countries. On the other hand, emerging countries have a high demand for housing construction on a large scale, but the current techniques in the developed countries for building requires a large amount of natural resources and skilled labor. This contextualization brings sustainability problems for the construction sector in emerging countries, often with scarce natural resources and with the construction sector underdeveloped. Through a cooperative action between the construction company Mota-Engil Engineering and the University of Minho in Portugal, a construction technology was developed based on the use of Compressed Earth Blocks as part of a social concept for innovative small houses, favoring the adoption of local and natural materials and with the main premise of being dedicated to self-construction. The HiLoTec project - Development of a Sustainable Self-Construction System for Developing Countries was based on this idea. One of the several results of this project is this construction manual. To Mota-Engil the project was a platform for incubation of knowledge about earth construction and to obtain a constructive solution validated technically and scientifically, suitable to be implemented in the markets where it operates. For the University of Minho the project was an opportunity to strengthen skills in research, laboratory and scientific development, through the development of engineering studies, architecture and sustainability, as well as supporting the doctoral scholarships and dissemination of scientific publications. May the knowledge of this project be of benefit, in the future, for the welfare of those who build a HiLoTec house.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An increasing number of m-Health applications are being developed benefiting health service delivery. In this paper, a new methodology based on the principle of calm computing applied to diagnostic and therapeutic procedure reporting is proposed. A mobile application was designed for the physicians of one of the Portuguese major hospitals, which takes advantage of a multi-agent interoperability platform, the Agency for the Integration, Diffusion and Archive (AIDA). This application allows the visualization of inpatients and outpatients medical reports in a quicker and safer manner, in addition to offer a remote access to information. This project shows the advantages in the use of mobile software in a medical environment but the first step is always to build or use an interoperability platform, flexible, adaptable and pervasive. The platform offers a comprehensive set of services that restricts the development of mobile software almost exclusively to the mobile user interface design. The technology was tested and assessed in a real context by intensivists.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report on the growth and structural and morphologic characterization of stacked layers of self-assembled GeSn dots grown on Si (100) substrates by molecular beam epitaxy at low substrate temperature T = 350 °C. Samples consist of layers (from 1 up to 10) of Ge0.96Sn0.04 self-assembled dots separated by Si spacer layers, 10 nm thick. Their structural analysis was performed based on transmission electron microscopy, atomic force microscopy and Raman scattering. We found that up to 4 stacks of dots could be grown with good dot layer homogeneity, making the GeSn dots interesting candidates for optoelectronic device applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The design of self-standing multilayered structures based on biopolymers has been attracting increasing interest due to their potential in the biomedical field. However, their use has been limited due to their gel-like properties. Herein, we report the combination of covalent and ionic cross-linking, using natural and non-cytotoxic cross-linkers, such as genipin and calcium chloride (CaCl2). Combining both cross-linking types the mechanical properties of the multilayers increased and the water uptake ability decreased. The ionic cross-linking of multilayered chitosan (CHI)â alginate (ALG) films led to freestanding membranes with multiple interesting properties, such as: improved mechanical strength, calcium-induced adhesion and shape memory ability. The use of CaCl2 also offered the possibility of reversibly switching all of these properties by simple immersion in a chelate solution. We attribute the switch-ability of the mechanical properties, shape memory ability and the propensity for induced-adhesion to the ionic cross-linking of the multilayers. These findings suggested the potential of the developed polysaccharide freestanding membranes in a plethora of research fields, including in biomedical and biotechnological fields.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVE The aim of this study was to compare the performance of the current conventional Pap smear with liquid-based cytology (LBC) preparations. STUDY DESIGN Women routinely undergoing their cytopathological and histopathological examinations at Fundação Oncocentro de São Paulo (FOSP) were recruited for LBC. Conventional smears were analyzed from women from other areas of the State of São Paulo with similar sociodemographic characteristics. RESULTS A total of 218,594 cases were analyzed, consisting of 206,999 conventional smears and 11,595 LBC. Among the conventional smears, 3.0% were of unsatisfactory preparation; conversely, unsatisfactory LBC preparations accounted for 0.3%. The ASC-H (atypical squamous cells - cannot exclude high-grade squamous intraepithelial lesion) frequency did not demonstrate any differences between the two methods. In contrast, the incidence of ASC-US (atypical squamous cells of undetermined significance) was almost twice as frequent between LBC and conventional smears, at 2.9 versus 1.6%, respectively. An equal percentage of high-grade squamous intraepithelial lesions were observed for the two methods, but not for low-grade squamous intraepithelial lesions, which were more significantly observed in LBC preparations than in conventional smears (2.2 vs. 0.7%). The index of positivity was importantly enhanced from 3.0% (conventional smears) to 5.7% (LBC). CONCLUSIONS LBC performed better than conventional smears, and we are truly confident that LBC can improve public health strategies aimed at reducing cervical lesions through prevention programs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Degree of Doctor of Philosophy of Structural/Civil Engineering

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Bovine α-lactalbumin (α-La) and lysozyme (Lys), two globular proteins with highly homologous tertiary structures and opposite isoelectric points, were used to produce bio-based supramolecular structures under various pH values (3, 7 and 11), temperatures (25, 50 and 75 °C) and times (15, 25 and 35 min) of heating. Isothermal titration calorimetry experiments showed protein interactions and demonstrated that structures were obtained from the mixture of α-La/Lys in molar ratio of 0.546. Structures were characterized in terms of morphology by transmission electron microscopy (TEM) and dynamic light scattering (DLS), conformational structure by circular dichroism and intrinsic fluorescence spectroscopy and stability by DLS. Results have shown that protein conformational structure and intermolecular interactions are controlled by the physicochemical conditions applied. The increase of heating temperature led to a significant decrease in size and polydispersity (PDI) of α-La–Lys supramolecular structures, while the increase of heating time, particularly at temperatures above 50 °C, promoted a significant increase in size and PDI. At pH 7 supramolecular structures were obtained at microscale – confirmed by optical microscopy – displaying also a high PDI (i.e. > 0.4). The minimum size and PDI (61 ± 2.3 nm and 0.14 ± 0.03, respectively) were produced at pH 11 for a heating treatment of 75 °C for 15 min, thus suggesting that these conditions could be considered as critical for supramolecular structure formation. Its size and morphology were confirmed by TEM showing a well-defined spherical form. Structures at these conditions showed to be stable at least for 30 or 90 days, when stored at 25 or 4 °C, respectively. Hence, α-La–Lys supramolecular structures showed properties that indicate that they are a promising delivery system for food and pharmaceutical applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Surgical site infections (SSI) often occur after invasive surgery, which is as a serious health problem, making it important to develop new biomaterials to prevent infections. Spider silk is a natural biomaterial with excellent biocompatibility, low immunogenicity and controllable biodegradability. Through recombinant DNA technology, spider silk-based materials can be bioengineered and functionalized with antimicrobial (AM) peptides 1. The aim of this study is to develop new materials by combining spider silk chimeric proteins with AM properties and silk fibroin extracted from Bombyx mori cocoons to prevent microbial infection. Here, spider silk domains derived from the dragline sequence of the spider Nephila clavipes (6 mer and 15 mer) were fused with the AM peptides Hepcidin and Human Neutrophil peptide 1 (HNP1). The spider silk domain maintained its self-assembly features allowing the formation of beta-sheets to lock in structures without any chemical cross-linking. The AM properties of the developed chimeric proteins showed that 6 mer + HNP1 protein had a broad microbicidal activity against pathogens. The 6 mer + HNP-1 protein was then assembled with different percentages of silk fibroin into multifunctional films. In vitro cell studies with a human fibroblasts cell line (MRC5) showed nontoxic and cytocompatible behavior of the films. The positive cellular response, together with structural properties, suggests that this new fusion protein plus silk fibroin may be good candidates as multifunctional materials to prevent SSI.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A new concept of semipermeable reservoirs containing co-cultures of cells and supporting microparticles is presented, inspired by the multi-phenotypic cellular environment of bone. Based on the deconstruction of the â stem cell nicheâ , the developed capsules are designed to drive a self-regulated osteogenesis. PLLA microparticles functionalized with collagen I, and a co-culture of adipose stem (ASCs) and endothelial (ECs) cells are immobilized in spherical liquified capsules. The capsules are coated with multilayers of poly(L-lysine), alginate, and chitosan nano-assembled through layer-by-layer. Capsules encapsulating ASCs alone or in a co-culture with ECs are cultured in endothelial medium with or without osteogenic differentiation factors. Results show that osteogenesis is enhanced by the co-encapsulation, which occurs even in the absence of differentiation factors. These findings are supported by an increased ALP activity and matrix mineralization, osteopontin detection, and the up regulation of BMP-2, RUNX2 and BSP. The liquified co-capsules also act as a VEGF and BMP-2 cytokines release system. The proposed liquified capsules might be a valuable injectable self-regulated system for bone regeneration employing highly translational cell sources.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dissertação de mestrado em Ciências da Educação (área de especialização em Tecnologia Educativa)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

"Published online before print November 20, 2015"