12 resultados para Synthesis of imines

em Universidade do Minho


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de mestrado em Química Medicinal

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The occupational risks in the nanotechnology research laboratories are an important topic since a great number of researchers are involved in this area. The risk assessment performed by both qualitative and quantitative methods is a necessary step for the management of the occupational risks. Risk assessment could be performed by qualitative methods that gather consensus in the scientific community. It is also possible to use quantitative methods, based in different technics and metrics, as indicative exposure limits are been settled by several institutions. While performing the risk assessment, the information on the materials used is very important and, if it is not updated, it could create a bias in the assessment results. The exposure to TiO2 nanoparticles risk was assessed in a research laboratory using a quantitative exposure method and qualitative risk assessment methods. It was found the results from direct-reading Condensation Particle Counter (CPC) equipment and the CB Nanotool seem to be related and aligned, while the results obtained from the use of the Stoffenmanager Nano seem to indicate a higher risk level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Well-dispersed loads of finely powdered metals, metal oxides, several carbon allotropes or nanoclays are incorporated into highly porous polyamide 6 microcapsules in controllable amounts via an original one-step in situ fabrication technique. It is based on activated anionic polymerization (AAP) of ε-caprolactam in a hydrocarbon solvent performed in the presence of the respective micro- or nanosized loads. The forming microcapsules with typical diameters of 25-50 µm entrap up to 40 wt% of load. Their melt processing produces hybrid thermoplastic composites. Mechanical, electric conductivity and magnetic response measurements show that transforming of in situ loaded microcapsules into composites by melt processing (MP) is a facile and rapid method to fabricate materials with high mechanical resistance and electro-magnetic characteristics sufficient for many industrial applications. This novel concept requires low polymerization temperatures, no functionalization or compatibilization of the loads and it is easy to scale up at industrial production levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[Excerpt] The purine core is a privileged scaffold in medicinal chemistry and the biological relevance of purine derivatives makes them attractive targets in the preparation of combinatorial libraries.1,2 In particular, there is a great interest in the synthesis of 8-substituted purines due to their important potential as antiviral and anticancer agents.3 Reports on 8-aminopurines are limited and general methods to obtain these purine derivatives are still needed.4 Cyclic amines and hydrazines are key structural motifs in various bioactive agents.5 Here we report a novel, efficient and inexpensive method for the synthesis of 6,8-diaminopurines 4 incorporating cycloalkylamino substituents at N3position of the purine ring. (...)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[Excerpt] Purine nucleobases are essential biomolecules in living organisms. Playing several key roles in the cell, they have been a significant inspiration for drug design.1 Benzimidazole nucleus is an important pharmacophore in the development of molecules with pharmaceutical or biological interest. Benzimidazoles have been reported to display significant pharmacological activities such as antiulcer, antifungal, antiparkinson, anticancer and antibiotic.2 Fused structures incorporating these two scaffolds might be important for medicinal chemistry and, to the best of our knowledge, there are no reports of these systems in the literature. In particular, benzo[4,5]imidazo[2,1]purines seem to be novel and must be important target molecules in the heterocyclic synthesis. (...)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[Excerpt] Purines, such as adenine, are one of the most important naturally occurring nitrogen heterocycles and they are frequently used as bioactive agents.[1,2] The increasing number of synthetic purines reveals the great potential of these compounds as enzyme inhibitors. Protein Kinases have an important regulatory role in cell proliferation, differentiation and signalling processes. Abnormal signal transduction is responsible for devastating diseases such as cancer. All of the protein kinases identified have in common the cofactor ATP indicating that the adenine nucleus is a very important scaffold for discovery of new anti-cancer agents.[3,4] Previous work identified a modest anticancer activity in a family of 6-arylaminopurines. In the view of these results, it seemed reasonable to assume that some interesting anticancer agents might result by replacement of the phenyl group by a secondary amino group linked to the N-6 atom of the adenine moiety. (...)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[Excerpt] The imidazole nucleus is present in a significant number of biomolecules and the inclusion of this moiety in organic scaffolds is considered an important synthetic strategy in drug discovery.[1] 5-Aminoimidazoles are interesting building blocks in medicinal chemistry since they are key components in many bioactive molecules and their derivatives showed a wide pharmacological potential as anticancer drugs.[1] The hydrazones constitute an important class of biological active drug molecules due to their wide range of pharmacological properties that include antitumoral activities.[2] Amidrazone derivatives could be considered very promising in the perspective of new drug discovery, because they are very effective as building blocks to obtain various heterocycles.[2,3] The α-hydrazononitriles are a special case of compounds belonging to the family of hydrazones that is less common in the literature, but has a great interest due to their pharmacological applications.[4] (...)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Radical cyclization continues to be a central methodology for the preparation of natural products containing heterocyclic rings. Hence, some electrochemical results obtained by cyclic voltammetry and controlled-potential electrolysis in the study of electroreductive intramolecular cyclization of ethyl (2S, 3R)-2-bromo-3-propargyloxy-3-(2’,3’,4’,6’-tetra-O-acetyl-beta-D-glucopyranosyloxy) propanoate (1a), 2-bromo-3-allyloxy-3-(2’,3’,4’,6’-tetra-O-acetyl-beta-D-glucopyranosyloxy)propanoate (1b), 2-bromo-[1-(prop-2-yn-1-yloxy)propyl]benzene (1c) and [1-bromo-2-methoxy-2-(prop-2’-yn-1-yloxy)ethyl]benzene (1d) promoted by (1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane)nickel(I), [Ni(tmc)]+, electrogenerated at glassy carbon cathodes in ethanol and ethanol:water mixtures containing tetraalkylammonium salts, are presented. During controlled-potential electrolyses of solutions containing [Ni(tmc)]2+ and bromoalkoxylated compounds (1) catalytic reduction of the latter proceeds via one-electron cleavage of the carbon–bromine bond to form a radical intermediate that undergoes cyclization to afford the substituted tetrahydrofurans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Enzymatic polymerization of aniline was first performed in lignosulfonate (LGS) template system. High-redox-potential catalyst laccase, isolated from Aspergillus, was used as a biocatalyst in the synthesis of conducting polyaniline/lignosulfonate (PANI-ES-LGS) complex using atmospheric oxygen as the oxidizing agent. The linear templates (LGS), also serving as the dopants, could facilitate the directional alignment of the monomer and improve the solubility of the conducting polymer. The process of the polymerization was monitored using UV-Vis spectroscopy, by which the conditions for laccase-catalyzed synthesis of PANI-ES-LGS complex were also optimized. The structure characterizations and solubility of the complex were carried out using corresponding characterization techniques respectively. The PANI-ES-LGS suspensions obtained was used as coating for cotton with a conventional padder to explore the applications of the complex. The variable optoelectronic properties of the coated cotton were confirmed by cyclic voltammetry and color strength test. The molecular weight changes of LGS treated by laccase were also studied to discuss the mechanism of laccase catalyzed aniline polymerization in LGS template system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese de Doutoramento em Ciências (Especialidade em Química)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work explores the best conditions for the enzymatic synthesis of poly (ethylene glutarate) for the first time. The start-up materials are the liquids; diethyl glutarate and ethylene glycol diacetate, without the need of addition of extra solvent. The reactions are catalyzed by lipase B from Candida antarctica immobilized on glycidyl methacrylate-ter-divinylbenzene-ter-ethylene glycol dimethacrylate at 40 °C during 18 h in water bath with mechanical stirring or 1 h in ultrasonic bath followed by 6 h in vacuum in both the cases for evaporation of ethyl acetate. The application of ultrasound significantly intensified the polyesterification reaction with reduction of the processing time from 24 to 7 h. The same degree of polymerization was obtained for the same enzyme loading in less time of reaction when using the ultrasound treatment. The degree of polymerization for long-term polyesterification was improved approximately 8-fold due to the presence of sonication during the reaction. The highest degree of polymerization achieved was 31, with a monomer conversion of 96.77%. The ultrasound treatment demonstrated to be an effective green approach to intensify the polyesterification reaction with enhanced initial kinetics and high degree of polymerization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese de Doutoramento em Ciências (área de especialização em Química)