6 resultados para Supercritical Fluid Extraction (SFE)
em Universidade do Minho
Resumo:
The supercritical fluid technology has been target of many pharmaceuticals investigations in particles production for almost 35 years. This is due to the great advantages it offers over others technologies currently used for the same purpose. A brief history is presented, as well the classification of supercritical technology based on the role that the supercritical fluid (carbon dioxide) performs in the process.
Resumo:
INTRODUCTION & OBJECTIVES: Urothelial tumors of upper urinary tract are ranked among the most common types of cancers worldwide. The current standard therapy to prevent recurrence is intravesical Bacillus Calmetteâ Guerin (BCG) immunotherapy, but it presents several disadvantages such as BCG failure and intolerance. Another way is to use chemotherapy, which is generally better tolerated that BCG. In this case, drugs such as epirubicin, doxorubicin, paclitaxel and gemcitabine are used. Nevertheless, intravesical chemotherapy only prevents recurrence in the short-term. These failings can be partially attributed to the short residence time and low bioavailability of the drug within the upper urinary tract and the cancer cells, resulting in a need for frequent drug instillation. To avoid these problems, biodegradable ureteral stents impregnated by supercritical fluid CO2 (SCF) with each of the four anti-cancer drugs were produced. MATERIAL & METHODS: Four formulations with different concentrations of gelatin and alginate and crosslink agent were tested and bismuth was added to confer radiopaque properties to the stent. The preliminary in vivo validation studies in female domestic pigs was conducted at the University of Minho, Braga, after formal approval by the institutionâ s review board and in accordance with its internal ethical protocol for animal experiments. Paclitaxel, epirubicin, doxorubicin and gemcitabine were impregnated in the stents and the release kinetics was measured in artificial urine solution (AUS) for 9 days by UV spectroscopy in a microplate reader. The anti-tumoral effect of the developed stents in transitional cell carcinoma (TCC) and HUVEC primary cells, used as control, was evaluated. RESULTS: The in vivo validation of this second-generation of ureteral stents performed was herein demonstrated. Biodegradable ureteral stents were placed in the ureters of a female pigs, following the normal surgical procedure. The animals remained asymptomatic, with normal urine flow. The in vitro release study in AUS of the stent impregnated showed a higher release in the first 72h for the four anti-cancer drugs impregnated after this time the plateau was achieved and the stent degraded after 9 days. The direct and indirect contact of the anti-cancer biodegradable stents with the TCC and HUVEC cell lines confirm the anti-tumor effect of the stents impregnated with the four anti-cancer drugs, reducing around 75% of the viability of the TCC cell line after 72h and no killing effect in the HUVEC cells. CONCLUSIONS: The use of biodegradable ureteral stent in urology clinical practice not only reduce the stent-related symptoms but also open new treatment therapyâ s, like in urothelial tumors of upper urinary tract. Furthermore, we have demonstrated the clinical validation in vivo pig model. This study has thus shown the killing efficacy of the anti-cancer drug eluting biodegradable stents in vitro for the TCC cell line, with no toxicity observed in the control, non-cancerous cells.The direct and indirect contact of the anti-cancer biodegradable stents with the TCC and HUVEC cell lines confirm the anti-tumor effect of the stents impregnated with the four anti-cancer drugs, reducing around 75% of the viability of the TCC cell line after 72h and no killing effect in the HUVEC cells. This study has thus shown the killing efficacy of the anti-cancer drug eluting biodegradable stents in vitro for the TCC cell line, with no toxicity observed in the control, non-cancerous cells.
Resumo:
[Excerpt] Cupuassu (Theobroma grandiflorum), tucumã (Astrocaryum aculeatum), peach palm (Bactris gasipaes) and abricó (American Mammea L.) are exotic fruits found in the Brazilian Amazon rainforest. All of them are well known by the native populations, and for centuries the pulps have been used in the production of juices, deserts, jams, syrups, and alcoholic beverages, among others. Additionally, the fruit seeds have been used as animal feed, fertilizers or to plant new seedlings, but a great part of these seeds are usually discarded. (...)
Resumo:
[Excerpt] Isolation and purification of valuable compounds are very important processes to valorize agro-food byproducts. Currently, protein extraction and development of environmentally friendly technologies are industrially relevant topics [1]. Among the extracted proteins from byproducts proteases are a relevant group for industrial applications. These enzymes are a class of hydrolytic enzymes capable of cleaving the peptide bonds of proteins chains and are essential in physiological processes [2]. (...)
Resumo:
In search to increase the offer of liquid, clean, renewable and sustainable energy in the world energy matrix, the use of lignocellulosic materials (LCMs) for bioethanol production arises as a valuable alternative. The objective of this work was to analyze and compare the performance of Saccharomyces cerevisiae, Pichia stipitis and Zymomonas mobilis in the production of bioethanol from coconut fibre mature (CFM) using different strategies: simultaneous saccharification and fermentation (SSF) and semi-simultaneous saccharification and fermentation (SSSF). The CFM was pretreated by hydrothermal pretreatment catalyzed with sodium hydroxide (HPCSH). The pretreated CFM was characterized by X-ray diffractometry and SEM, and the lignin recovered in the liquid phase by FTIR and TGA. After the HPCSH pretreatment (2.5% (v/v) sodium hydroxide at 180 °C for 30 min), the cellulose content was 56.44%, while the hemicellulose and lignin were reduced 69.04% and 89.13%, respectively. Following pretreatment, the obtained cellulosic fraction was submitted to SSF and SSSF. Pichia stipitis allowed for the highest ethanol yield 90.18% in SSSF, 91.17% and 91.03% were obtained with Saccharomyces cerevisiae and Zymomonas mobilis, respectively. It may be concluded that the selection of the most efficient microorganism for the obtention of high bioethanol production yields from cellulose pretreated by HPCSH depends on the operational strategy used and this pretreatment is an interesting alternative for add value of coconut fibre mature compounds (lignin, phenolics) being in accordance with the biorefinery concept.
Resumo:
Polysaccharides and oligosaccharides can improve quality and enhance nutritional value of final food products due to their technological and nutritional features ranging from their capacity to improve texture to their effect as dietary fibers. For this reason, they are among the most studied ingredients in the food industry. The use of natural polysaccharides and oligosaccharides as food additives has been a reality since the food industry understood their potential technological and nutritional applications. Currently, the replacement of traditional ingredients and/or the synergy between traditional ingredients and polysaccharides and oligosaccharides are perceived as promising approaches by the food industry. Traditionally, polysaccharides have been used as thickening, emulsifying, and stabilizing agents, however, at this moment polysaccharides and oligosaccharides claim health and nutritional advantages, thus opening a new market of nutritional and functional foods. Indeed, their use as nutritional food ingredients enabled the food industry to develop a countless number of applications, e.g., fat replacers, prebiotics, dietary fiber, and antiulcer agents. Based on this, among the scientific community and food industry, in the last years many research studies and commercial products showed the possibility of using either new or already used sources (though with changed properties) of polysaccharides for the production of food additives with new and enhanced properties. The increasing interest in such products is clearly illustrated by the market figures and consumption trends. As an example, the sole market of hydrocolloids is estimated to reach $7 billion in 2018. Moreover, oligosaccharides can be found in more than 500 food products resulting in a significant daily consumption. A recent study from the Transparency Market Research on Prebiotic Ingredients Market reported that prebiotics' demand was worth $2.3 billion in 2012 and it is estimated to reach $4.5 billion in 2018, growing at a compound annual growth rate of 11.4% between 2012 and 2018. The entrance of this new generation of food additives in the market, often claiming health and nutritional benefits, imposes an impartial analysis by the legal authorities regarding the accomplishment of requirements that have been established for introducing novel ingredients/food, including new poly- and oligosaccharides. This chapter deals with the potential use of polysaccharides and oligosaccharides as food additives, as well as alternative sources of these compounds and their possible applications in food products. Moreover, the regulation process to introduce novel polysaccharides and oligosaccharides in the market as food additives and to assign them health claims is discussed.