16 resultados para Subcarrier Allocation
em Universidade do Minho
Resumo:
telligence applications for the banking industry. Searches were performed in relevant journals resulting in 219 articles published between 2002 and 2013. To analyze such a large number of manuscripts, text mining techniques were used in pursuit for relevant terms on both business intelligence and banking domains. Moreover, the latent Dirichlet allocation modeling was used in or- der to group articles in several relevant topics. The analysis was conducted using a dictionary of terms belonging to both banking and business intelli- gence domains. Such procedure allowed for the identification of relationships between terms and topics grouping articles, enabling to emerge hypotheses regarding research directions. To confirm such hypotheses, relevant articles were collected and scrutinized, allowing to validate the text mining proce- dure. The results show that credit in banking is clearly the main application trend, particularly predicting risk and thus supporting credit approval or de- nial. There is also a relevant interest in bankruptcy and fraud prediction. Customer retention seems to be associated, although weakly, with targeting, justifying bank offers to reduce churn. In addition, a large number of ar- ticles focused more on business intelligence techniques and its applications, using the banking industry just for evaluation, thus, not clearly acclaiming for benefits in the banking business. By identifying these current research topics, this study also highlights opportunities for future research.
Resumo:
Publicado em "AIP Conference Proceedings" Vol. 1648
Resumo:
Earthworks involve the levelling or shaping of a target area through the moving or processing of the ground surface. Most construction projects require earthworks, which are heavily dependent on mechanical equipment (e.g., excavators, trucks and compactors). Often, earthworks are the most costly and time-consuming component of infrastructure constructions (e.g., road, railway and airports) and current pressure for higher productivity and safety highlights the need to optimize earthworks, which is a nontrivial task. Most previous attempts at tackling this problem focus on single-objective optimization of partial processes or aspects of earthworks, overlooking the advantages of a multi-objective and global optimization. This work describes a novel optimization system based on an evolutionary multi-objective approach, capable of globally optimizing several objectives simultaneously and dynamically. The proposed system views an earthwork construction as a production line, where the goal is to optimize resources under two crucial criteria (costs and duration) and focus the evolutionary search (non-dominated sorting genetic algorithm-II) on compaction allocation, using linear programming to distribute the remaining equipment (e.g., excavators). Several experiments were held using real-world data from a Portuguese construction site, showing that the proposed system is quite competitive when compared with current manual earthwork equipment allocation.
Resumo:
Traffic Engineering (TE) approaches are increasingly impor- tant in network management to allow an optimized configuration and resource allocation. In link-state routing, the task of setting appropriate weights to the links is both an important and a challenging optimization task. A number of different approaches has been put forward towards this aim, including the successful use of Evolutionary Algorithms (EAs). In this context, this work addresses the evaluation of three distinct EAs, a single and two multi-objective EAs, in two tasks related to weight setting optimization towards optimal intra-domain routing, knowing the network topology and aggregated traffic demands and seeking to mini- mize network congestion. In both tasks, the optimization considers sce- narios where there is a dynamic alteration in the state of the system, in the first considering changes in the traffic demand matrices and in the latter considering the possibility of link failures. The methods will, thus, need to simultaneously optimize for both conditions, the normal and the altered one, following a preventive TE approach towards robust configurations. Since this can be formulated as a bi-objective function, the use of multi-objective EAs, such as SPEA2 and NSGA-II, came nat- urally, being those compared to a single-objective EA. The results show a remarkable behavior of NSGA-II in all proposed tasks scaling well for harder instances, and thus presenting itself as the most promising option for TE in these scenarios.
Resumo:
Earthworks tasks aim at levelling the ground surface at a target construction area and precede any kind of structural construction (e.g., road and railway construction). It is comprised of sequential tasks, such as excavation, transportation, spreading and compaction, and it is strongly based on heavy mechanical equipment and repetitive processes. Under this context, it is essential to optimize the usage of all available resources under two key criteria: the costs and duration of earthwork projects. In this paper, we present an integrated system that uses two artificial intelligence based techniques: data mining and evolutionary multi-objective optimization. The former is used to build data-driven models capable of providing realistic estimates of resource productivity, while the latter is used to optimize resource allocation considering the two main earthwork objectives (duration and cost). Experiments held using real-world data, from a construction site, have shown that the proposed system is competitive when compared with current manual earthwork design.
Resumo:
Earthworks tasks are often regarded in transportation projects as some of the most demanding processes. In fact, sequential tasks such as excavation, transportation, spreading and compaction are strongly based on heavy mechanical equipment and repetitive processes, thus becoming as economically demanding as they are time-consuming. Moreover, actual construction requirements originate higher demands for productivity and safety in earthwork constructions. Given the percentual weight of costs and duration of earthworks in infrastructure construction, the optimal usage of every resource in these tasks is paramount. Considering the characteristics of an earthwork construction, it can be looked at as a production line based on resources (mechanical equipment) and dependency relations between sequential tasks, hence being susceptible to optimization. Up to the present, the steady development of Information Technology areas, such as databases, artificial intelligence and operations research, has resulted in the emergence of several technologies with potential application bearing that purpose in mind. Among these, modern optimization methods (also known as metaheuristics), such as evolutionary computation, have the potential to find high quality optimal solutions with a reasonable use of computational resources. In this context, this work describes an optimization algorithm for earthworks equipment allocation based on a modern optimization approach, which takes advantage of the concept that an earthwork construction can be regarded as a production line.
Resumo:
Work-related musculoskeletal disorders (WMSD) became one of the biggest health problems in the workplace and one of the main concerns of ergonomics and despite all the technical improvements manual handling is still an important risk factor for WMSD. The current study was performed with the main objective of conducting an ergonomic analysis in a workplace that consists in packaging products in a pallet, in a food distribution industry, also called picking. In this perspective, the aim of the study is to identify if the tasks performed by operators present any risk of WMSD and, if so, to suggest proposals for minimizing the associated effort. The methodologies of ergonomic risk assessment that were initially applied were the Risk Reckoner and the Manual Handling Assessment Chart (MAC). Subsequently, in order to, on the one hand, complement the analysis performed using the two methods previously mentioned, and, on the other hand, allow an assessment of two important risk factors associated with this activity (work postures and loads handling), two additional methodologies were also selected: the Revised NIOSH Lifting Equation and the Rapid Entire Body Assessment (REBA). In all the performed approaches, the tasks of palletizing at lower levels were identified as the ones that most penalize workers in what regards the risk of development of WMSD. All methodologies identified levels of risk that require an immediate or short-term ergonomic intervention, aiming at ensuring the safety and health of workers performing such activity. The implementation of measures designed to eliminate or minimize the risk may involve the allocation of significant human and material resources that is increasingly necessary to manage efficiently. Taking into account the complexity and variability of the developed tasks, it is recommended that such a decision can be preceded by a new study using more accurate risk assessment methodologies, such as those that use monitoring tools.
Resumo:
Tese de Doutoramento em Ciências da Administração
Resumo:
Programa Doutoral em Engenharia Industrial e de Sistemas.
Resumo:
Project Management involves onetime endeavors that demand for getting it right the first time. On the other hand, project scheduling, being one of the most modeled project management process stages, still faces a wide gap from theory to practice. Demanding computational models and their consequent call for simplification, divert the implementation of such models in project management tools from the actual day to day project management process. Special focus is being made to the robustness of the generated project schedules facing the omnipresence of uncertainty. An "easy" way out is to add, more or less cleverly calculated, time buffers that always result in project duration increase and correspondingly, in cost. A better approach to deal with uncertainty seems to be to explore slack that might be present in a given project schedule, a fortiori when a non-optimal schedule is used. The combination of such approach to recent advances in modeling resource allocation and scheduling techniques to cope with the increasing flexibility in resources, as can be expressed in "Flexible Resource Constraint Project Scheduling Problem" (FRCPSP) formulations, should be a promising line of research to generate more adequate project management tools. In reality, this approach has been frequently used, by project managers in an ad-hoc way.
Resumo:
The authors propose a mathematical model to minimize the project total cost where there are multiple resources constrained by maximum availability. They assume the resources as renewable and the activities can use any subset of resources requiring any quantity from a limited real interval. The stochastic nature is inferred by means of a stochastic work content defined per resource within an activity and following a known distribution and the total cost is the sum of the resource allocation cost with the tardiness cost or earliness bonus in case the project finishes after or before the due date, respectively. The model was computationally implemented relying upon an interchange of two global optimization metaheuristics – the electromagnetism-like mechanism and the evolutionary strategies. Two experiments were conducted testing the implementation to projects with single and multiple resources, and with or without maximum availability constraints. The set of collected results shows good behavior in general and provide a tool to further assist project manager decision making in the planning phase.
Resumo:
Published online first in 10 July 2013
Resumo:
Dissertação de mestrado integrado em Engenharia Civil
Resumo:
Tese de Doutoramento em Engenharia Civil.
Resumo:
Dissertação de mestrado integrado em Engenharia Civil