4 resultados para Structural masonry. Numerical modeling. Bending perpendicular to the plane. Retaining walls

em Universidade do Minho


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de mestrado em Engenharia Industrial

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Degree of Doctor of Philosophy of Structural/Civil Engineering

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Timber frame buildings are well known as an efficient seismic resistant structure popular all over the world not only due to their seismic performance, but also to their low cost and the strength they offer. These constructions still exist today and it is important to be able to preserve them, so a better knowledge on their behaviour is sought. Furthermore, historic technologies could be used even in modern constructions to build seismic resistant buildings using more natural materials with lesser costs. A great rehabilitation effort is being carried out on this type of buildings, as their neglect has led to decay or their change in use and alterations to the structure has led to the need to retrofit such buildings; only recently studies on their behaviour have become available and only a few of them address the issue of possible strengthening techniques for this kind of walls. In this scope, an innovative retrofitting technique (near surface mounted steel flat bars) is proposed and validated on traditional timber frame walls based on an extensive experimental program. The results of the static cyclic tests on distinct wall typologies retrofitted with the NSM technique are herein presented and discussed in detail. The main features on deformation, lateral stiffness, lateral resistance and seismic performance indexes are analysed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[Extrat] Multiphase flows are relevant in several industrial processes, thus the availability of accurate numerical modeling tools, able to support the design of products and processes, is of much significance. OpenFOAM version 2.3.x comprises a multiphase flow solver able to couple Eulerian and Lagrangian phases using the discrete particles method (DPM), the DPMFoam. In this work the DPMFoam solver is assessed by comparing its predictions with analytical results and experimental and simulated data available in the literature. They are results from Goldschmidt’s [1] and Hoomans’s [2] theses and the analytical Ergun equation. The goal was to define accuracy and performance of DPMFoam in general scientific or commercial applications. Obtained results demonstrate a good agreement with the reference simulation data and is within reasonable deviations from the experimental values. (...)