6 resultados para Straight and Reverse Problems of Data Uncertainty

em Universidade do Minho


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Worldwide, around 9% of the children are born with less than 37 weeks of labour, causing risk to the premature child, whom it is not prepared to develop a number of basic functions that begin soon after the birth. In order to ensure that those risk pregnancies are being properly monitored by the obstetricians in time to avoid those problems, Data Mining (DM) models were induced in this study to predict preterm births in a real environment using data from 3376 patients (women) admitted in the maternal and perinatal care unit of Centro Hospitalar of Oporto. A sensitive metric to predict preterm deliveries was developed, assisting physicians in the decision-making process regarding the patients’ observation. It was possible to obtain promising results, achieving sensitivity and specificity values of 96% and 98%, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Doctoral Thesis for PhD degree in Industrial and Systems Engineering

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the trigger and offline reconstruction, identification and energy calibration algorithms for hadronic decays of tau leptons employed for the data collected from pp collisions in 2012 with the ATLAS detector at the LHC center-of-mass energy s√ = 8 TeV. The performance of these algorithms is measured in most cases with Z decays to tau leptons using the full 2012 dataset, corresponding to an integrated luminosity of 20.3 fb−1. An uncertainty on the offline reconstructed tau energy scale of 2% to 4%, depending on transverse energy and pseudorapidity, is achieved using two independent methods. The offline tau identification efficiency is measured with a precision of 2.5% for hadronically decaying tau leptons with one associated track, and of 4% for the case of three associated tracks, inclusive in pseudorapidity and for a visible transverse energy greater than 20 GeV. For hadronic tau lepton decays selected by offline algorithms, the tau trigger identification efficiency is measured with a precision of 2% to 8%, depending on the transverse energy. The performance of the tau algorithms, both offline and at the trigger level, is found to be stable with respect to the number of concurrent proton--proton interactions and has supported a variety of physics results using hadronically decaying tau leptons at ATLAS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Biomédica

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Football is considered nowadays one of the most popular sports. In the betting world, it has acquired an outstanding position, which moves millions of euros during the period of a single football match. The lack of profitability of football betting users has been stressed as a problem. This lack gave origin to this research proposal, which it is going to analyse the possibility of existing a way to support the users to increase their profits on their bets. Data mining models were induced with the purpose of supporting the gamblers to increase their profits in the medium/long term. Being conscience that the models can fail, the results achieved by four of the seven targets in the models are encouraging and suggest that the system can help to increase the profits. All defined targets have two possible classes to predict, for example, if there are more or less than 7.5 corners in a single game. The data mining models of the targets, more or less than 7.5 corners, 8.5 corners, 1.5 goals and 3.5 goals achieved the pre-defined thresholds. The models were implemented in a prototype, which it is a pervasive decision support system. This system was developed with the purpose to be an interface for any user, both for an expert user as to a user who has no knowledge in football games.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Healthcare organizations often benefit from information technologies as well as embedded decision support systems, which improve the quality of services and help preventing complications and adverse events. In Centro Materno Infantil do Norte (CMIN), the maternal and perinatal care unit of Centro Hospitalar of Oporto (CHP), an intelligent pre-triage system is implemented, aiming to prioritize patients in need of gynaecology and obstetrics care in two classes: urgent and consultation. The system is designed to evade emergency problems such as incorrect triage outcomes and extensive triage waiting times. The current study intends to improve the triage system, and therefore, optimize the patient workflow through the emergency room, by predicting the triage waiting time comprised between the patient triage and their medical admission. For this purpose, data mining (DM) techniques are induced in selected information provided by the information technologies implemented in CMIN. The DM models achieved accuracy values of approximately 94% with a five range target distribution, which not only allow obtaining confident prediction models, but also identify the variables that stand as direct inducers to the triage waiting times.