8 resultados para Soil layer
em Universidade do Minho
Resumo:
Dissertação de mestrado integrado em Materials Engineering
Resumo:
This work describes the influence of a high annealing temperature of about 700C on the Si(substrate)/Si3N4/TiOx/Pt/LiCoO2 multilayer system for the fabrication of all-solid-state lithium ion thin film microbatteries. Such microbatteries typically utilize lithium cobalt oxide (LiCoO2) as cathode material with a platinum (Pt) current collector. Silicon nitride (Si3N4) is used to act as a barrier against Li diffusion into the substrate. For a good adherence between Si3N4 and Pt, commonly titanium (Ti) is used as intermediate layer. However, to achieve crystalline LiCoO2 the multilayer system has to be annealed at high temperature. This post-treatment initiates Ti diffusion into the Pt-collector and an oxidation to TiOx, leading to volume expansion and adhesion failures. To solve this adhesion problem, we introduce titanium oxide (TiOx) as an adhesion layer, avoiding the diffusion during the annealing process. LiCoO2, Pt and Si3N4 layers were deposited by magnetron sputtering and the TiOx layer by thermal oxidation of Ti layers deposited by e-beam technique. Asdeposited and annealed multilayer systems using various TiOx layer thicknesses were studied by scanning electron microscopy (SEM) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) and x-ray photoelectron spectroscopy (XPS). The results revealed that an annealing process at temperature of 700C leads to different interactions of Ti atoms between the layers, for various TiOx layer thicknesses (25–45 nm).
Resumo:
The reinforcement of soil is defined as an effective and reliable technique to improve strength and stability. For this propose, the use of natural fibers has been commonly. Over the past years, a series of studies have been performed in order to investigate the influence of randomly oriented fibers, especially for compressible clayey soils. However, less attention has been given to the reinforcing of sandy materials, as well as the use of oriented fibers meshes in order to improve mechanical behaviour. The main aim of this study is to identify the influence that different percentages of fibers, as well as the use of meshes of oriented fibers, has on soil mechanical behaviour. For this purpose, unconfined compression tests with local strain measurements were performed on a silty sand reinforced with Sisal fibers and a comparative study between randomly oriented and 0° and 90° fibers is presented.
Resumo:
In this work we produce and study the flexible organic–inorganic hybrid moisture barrier layers for the protection of air sensitive organic opto-electronic devices. The inorganic amorphous silicon nitride layer (SiNx:H) and the organic PMMA [poly (methyl methacrylate)] layer are deposited alternatingly by using hot wire chemical vapor deposition (HW-CVD) and spin-coating techniques, respectively. The effect of organic–inorganic hybrid interfaces is analyzed for increasing number of interfaces. We produce highly transparent (∼80% in the visible region) hybrid structures. The morphological properties are analysed providing a good basis for understanding the variation of the water vapor transmission rate (WVTR) values. A minimum WVTR of 4.5 × 10−5g/m2day is reported at the ambient atmospheric conditions for 7 organic/inorganic interfaces. The hybrid barriers show superb mechanical flexibility which confirms their high potential for flexible applications.
Resumo:
The layer-by-layer (LbL) deposition method was used to build up alternating layers (five) of different polyelectrolyte solutions (alginate, zein-carvacrol nanocapsules, chitosan and chitosan-carvacrol emulsions) on an aminolysed/charged polyethylene terephthalate (A/C PET) film. These nanolaminated films were characterised by contact angle measurements and through the determination of water vapour (WVTR) and oxygen (O2TR) transmission rates. The effect of active nanolaminated films against the Alternaria sp. and Rhizopus stolonifer was also evaluated. This procedure allowed developing optically transparent nanolaminated films with tuneable water vapour and gas properties and antifungal activity. The water and oxygen transmission rate values for the multilayer films were lower than those previously reported for the neat alginate or chitosan films. The presence of carvacrol and zein nanocapsules significantly decreased the water transmission rate (up to 40 %) of the nanolaminated films. However, the O2TR behaved differently and was only improved (up to 45 %) when carvacrol was encapsulated, i.e. nanolaminated films prepared by alternating alginate with nanocapsules of zein-carvacrol layers showed better oxygen barrier properties than those prepared as an emulsion of chitosan and carvacrol. These films containing zein-carvacrol nanocapsules also showed the highest antifungal activity (30 %), which did not significantly differ from those obtained with the highest amount of carvacrol, probably due to the controlled release of the active agent (carvacrol) from the zein-carvacrol nanocapsules. Thus, this work shows that nanolaminated films prepared with alternating layers of alginate and zein-carvacrol nanocapsules can be considered to improve the shelf-life of foodstuffs.
Resumo:
Dissertação de mestrado integrado em Engenharia Civil
Resumo:
Aromatic amines are widely used industrial chemicals as their major sources in the environment include several chemical industry sectors such as oil refining, synthetic polymers, dyes, adhesives, rubbers, perfume, pharmaceuticals, pesticides and explosives. They result also from diesel exhaust, combustion of wood chips and rubber and tobacco smoke. Some types of aromatic amines are generated during cooking, special grilled meat and fish, as well. The intensive use and production of these compounds explains its occurrence in the environment such as in air, water and soil, thereby creating a potential for human exposure. Since aromatic amines are potential carcinogenic and toxic agents, they constitute an important class of environmental pollutants of enormous concern, which efficient removal is a crucial task for researchers, so several methods have been investigated and applied. In this chapter the types and general properties of aromatic amine compounds are reviewed. As aromatic amines are continuously entering the environment from various sources and have been designated as high priority pollutants, their presence in the environment must be monitored at concentration levels lower than 30 mg L1, compatible with the limits allowed by the regulations. Consequently, most relevant analytical methods to detect the aromatic amines composition in environmental matrices, and for monitoring their degradation, are essential and will be presented. Those include Spectroscopy, namely UV/visible and Fourier Transform Infrared Spectroscopy (FTIR); Chromatography, in particular Thin Layer (TLC), High Performance Liquid (HPLC) and Gas chromatography (GC); Capillary electrophoresis (CE); Mass spectrometry (MS) and combination of different methods including GC-MS, HPLC-MS and CE-MS. Choosing the best methods depend on their availability, costs, detection limit and sample concentration, which sometimes need to be concentrate or pretreated. However, combined methods may give more complete results based on the complementary information. The environmental impact, toxicity and carcinogenicity of many aromatic amines have been reported and are emphasized in this chapter too. Lately, the conventional aromatic amines degradation and the alternative biodegradation processes are highlighted. Parameters affecting biodegradation, role of different electron acceptors in aerobic and anaerobic biodegradation and kinetics are discussed. Conventional processes including extraction, adsorption onto activated carbon, chemical oxidation, advanced oxidation, electrochemical techniques and irradiation suffer from drawbacks including high costs, formation of hazardous by-products and low efficiency. Biological processes, taking advantage of the naturally processes occurring in environment, have been developed and tested, proved as an economic, energy efficient and environmentally feasible alternative. Aerobic biodegradation is one of the most promising techniques for aromatic amines remediation, but has the drawback of aromatic amines autooxidation once they are exposed to oxygen, instead of their degradation. Higher costs, especially due to power consumption for aeration, can also limit its application. Anaerobic degradation technology is the novel path for treatment of a wide variety of aromatic amines, including industrial wastewater, and will be discussed. However, some are difficult to degrade under anaerobic conditions and, thus, other electron acceptors such as nitrate, iron, sulphate, manganese and carbonate have, alternatively, been tested.