4 resultados para Soil compaction.

em Universidade do Minho


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Civil

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Civil

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In highway construction, earthworks refer to the tasks of excavation, transportation, spreading and compaction of geomaterial (e.g. soil, rockfill and soil-rockfill mixture). Whereas relying heavily on machinery and repetitive processes, these tasks are highly susceptible to optimization. In this context Artificial Intelligent techniques, such as Data Mining and modern optimization can be applied for earthworks. A survey of these applications shows that they focus on the optimization of specific objectives and/or construction phases being possible to identify the capabilities and limitations of the analyzed techniques. Thus, according to the pinpointed drawbacks of these techniques, this paper describes a novel intelligent earthwork optimization system, capable of integrating DM, modern optimization and GIS technologies in order to optimize the earthwork processes throughout all phases of design and construction work. This integration system allows significant savings in time, cost and gas emissions contributing for a more sustainable construction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reinforcement of soil is defined as an effective and reliable technique to improve strength and stability. For this propose, the use of natural fibers has been commonly. Over the past years, a series of studies have been performed in order to investigate the influence of randomly oriented fibers, especially for compressible clayey soils. However, less attention has been given to the reinforcing of sandy materials, as well as the use of oriented fibers meshes in order to improve mechanical behaviour. The main aim of this study is to identify the influence that different percentages of fibers, as well as the use of meshes of oriented fibers, has on soil mechanical behaviour. For this purpose, unconfined compression tests with local strain measurements were performed on a silty sand reinforced with Sisal fibers and a comparative study between randomly oriented and 0° and 90° fibers is presented.