7 resultados para Software Package Data Exchange (SPDX)
em Universidade do Minho
Resumo:
Due to water scarcity, it is important to organize and regulate water resources utilization to satisfy the conflicting water demands and needs. This paper aims to describe a comprehensive methodology for managing the water sector of a defined urbanized region, using the robust capabilities of a Geographic Information System (GIS). The proposed methodology is based on finding alternatives to cover the gap between recent supplies and future demands. Nablus which is a main governorate located in the north of West Bank, Palestine, was selected as case study because this area is classified as arid to semi-arid area. In fact, GIS integrates hardware, software, and data for capturing, managing, analyzing, and displaying all forms of geographic information. The resulted plan of Nablus represents an example of the proposed methodology implementation and a valid framework for the elaboration of a water master plan.
Resumo:
Recently, there has been a growing interest in the field of metabolomics, materialized by a remarkable growth in experimental techniques, available data and related biological applications. Indeed, techniques as Nuclear Magnetic Resonance, Gas or Liquid Chromatography, Mass Spectrometry, Infrared and UV-visible spectroscopies have provided extensive datasets that can help in tasks as biological and biomedical discovery, biotechnology and drug development. However, as it happens with other omics data, the analysis of metabolomics datasets provides multiple challenges, both in terms of methodologies and in the development of appropriate computational tools. Indeed, from the available software tools, none addresses the multiplicity of existing techniques and data analysis tasks. In this work, we make available a novel R package, named specmine, which provides a set of methods for metabolomics data analysis, including data loading in different formats, pre-processing, metabolite identification, univariate and multivariate data analysis, machine learning, and feature selection. Importantly, the implemented methods provide adequate support for the analysis of data from diverse experimental techniques, integrating a large set of functions from several R packages in a powerful, yet simple to use environment. The package, already available in CRAN, is accompanied by a web site where users can deposit datasets, scripts and analysis reports to be shared with the community, promoting the efficient sharing of metabolomics data analysis pipelines.
Resumo:
Tese de Doutoramento em Ciências da Educação - Especialidade de Desenvolvimento Curricular
Resumo:
Transcriptional Regulatory Networks (TRNs) are powerful tool for representing several interactions that occur within a cell. Recent studies have provided information to help researchers in the tasks of building and understanding these networks. One of the major sources of information to build TRNs is biomedical literature. However, due to the rapidly increasing number of scientific papers, it is quite difficult to analyse the large amount of papers that have been published about this subject. This fact has heightened the importance of Biomedical Text Mining approaches in this task. Also, owing to the lack of adequate standards, as the number of databases increases, several inconsistencies concerning gene and protein names and identifiers are common. In this work, we developed an integrated approach for the reconstruction of TRNs that retrieve the relevant information from important biological databases and insert it into a unique repository, named KREN. Also, we applied text mining techniques over this integrated repository to build TRNs. However, was necessary to create a dictionary of names and synonyms associated with these entities and also develop an approach that retrieves all the abstracts from the related scientific papers stored on PubMed, in order to create a corpora of data about genes. Furthermore, these tasks were integrated into @Note, a software system that allows to use some methods from the Biomedical Text Mining field, including an algorithms for Named Entity Recognition (NER), extraction of all relevant terms from publication abstracts, extraction relationships between biological entities (genes, proteins and transcription factors). And finally, extended this tool to allow the reconstruction Transcriptional Regulatory Networks through using scientific literature.
Resumo:
Dissertação de mestrado integrado em Engenharia Biomédica
Resumo:
This data article is referred to the research article entitled The role of ascorbate peroxidase, guaiacol peroxidase, and polysaccharides in cassava (Manihot esculenta Crantz) roots under postharvest physiological deterioration by Uarrota et al. (2015). Food Chemistry 197, Part A, 737746. The stress duo to PPD of cassava roots leads to the formation of ROS which are extremely harmful and accelerates cassava spoiling. To prevent or alleviate injuries from ROS, plants have evolved antioxidant systems that include non-enzymatic and enzymatic defence systems such as ascorbate peroxidase, guaiacol peroxidase and polysaccharides. In this data article can be found a dataset called newdata, in RData format, with 60 observations and 06 variables. The first 02 variables (Samples and Cultivars) and the last 04, spectrophotometric data of ascorbate peroxidase, guaiacol peroxidase, tocopherol, total proteins and arcsined data of cassava PPD scoring. For further interpretation and analysis in R software, a report is also provided. Means of all variables and standard deviations are also provided in the Supplementary tables (data.long3.RData, data.long4.RData and meansEnzymes.RData), raw data of PPD scoring without transformation (PPDmeans.RData) and days of storage (days.RData) are also provided for data analysis reproducibility in R software.
Resumo:
Abstract Dataflow programs are widely used. Each program is a directed graph where nodes are computations and edges indicate the flow of data. In prior work, we reverse-engineered legacy dataflow programs by deriving their optimized implementations from a simple specification graph using graph transformations called refinements and optimizations. In MDE-speak, our derivations were PIM-to-PSM mappings. In this paper, we show how extensions complement refinements, optimizations, and PIM-to-PSM derivations to make the process of reverse engineering complex legacy dataflow programs tractable. We explain how optional functionality in transformations can be encoded, thereby enabling us to encode product lines of transformations as well as product lines of dataflow programs. We describe the implementation of extensions in the ReFlO tool and present two non-trivial case studies as evidence of our work’s generality