19 resultados para Sliding friction
em Universidade do Minho
Resumo:
Dissertação de mestrado integrado em Engenharia Biomédica
Resumo:
The authors thank the federal agency CAPES and the Foundation for Research Support of the state of Sao Paulo, Brazil (FAPESP) for providing a PhD scholarship, and the University of Minho, in Portugal, for the international collaboration.
Resumo:
Dissertação de mestrado integrado em Engenharia de Materiais
Resumo:
Dissertação de mestrado integrado em Engenharia Biomédica
Resumo:
Tese de Mestrado Ciclo de Estudos Integrados Conducentes ao Grau de Mestre em Arquitectura Área de Especialização: Construção e Tecnologia
Resumo:
The usage of rebars in construction is the most common method for reinforcing plain concrete and thus bridging the tensile stresses along the concrete crack surfaces. Usually design codes for modelling the bond behaviour of rebars and concrete suggest a local bond stress – slip relationship that comprises distinct reinforcement mechanisms, such as adhesion, friction and mechanical anchorage. In this work, numerical simulations of pullout tests were performed using the finite element method framework. The interaction between rebar and concrete was modelled using cohesive elements. Distinct local bond laws were used and compared with ones proposed by the Model Code 2010. Finally an attempt was made to model the geometry of the rebar ribs in conjunction with a material damaged plasticity model for concrete.
Resumo:
Nowadays, road accidents are a major public health problem, which increase is forecasted if road safety is not treated properly, dying about 1.2 million people every year around the globe. In 2012, Portugal recorded 573 fatalities in road accidents, on site, revealing the largest decreasing of the European Union for 2011, along with Denmark. Beyond the impact caused by fatalities, it was calculated that the economic and social costs of road accidents weighted about 1.17% of the Portuguese gross domestic product in 2010. Visual Analytics allows the combination of data analysis techniques with interactive visualizations, which facilitates the process of knowledge discovery in sets of large and complex data, while the Geovisual Analytics facilitates the exploration of space-time data through maps with different variables and parameters that are under analysis. In Portugal, the identification of road accident accumulation zones, in this work named black spots, has been restricted to annual fixed windows. In this work, it is presented a dynamic approach based on Visual Analytics techniques that is able to identify the displacement of black spots on sliding windows of 12 months. Moreover, with the use of different parameterizations in the formula usually used to detect black spots, it is possible to identify zones that are almost becoming black spots. Through the proposed visualizations, the study and identification of countermeasures to this social and economic problem can gain new grounds and thus the decision- making process is supported and improved.
Resumo:
The occurrence of audible squeaking in some patients with ceramic-on-ceramic (CoC) hip prostheses is a cause for concern. Considering multifactor contributing to this phenomenon, many studies have been conducted over the last decade. Great efforts have been put on understanding the mechanics of the hip squeaking to gain a deep insight into factors resulting in sound emission from hip articulation. Disruption of fluid-film lubrication and friction were reported as main potential causes of hip squeaking, while patient and surgical factors as well as design and material of hip implants were identified as affecting factors. This review article therefore summarised the recent available literature on this subject to provide a platform for future developments. Moreover, high wear rates and ceramic liner fracture as viable consequences of hip squeaking were discussed.
Resumo:
The present work describes a model for the determination of the moment–rotation relationship of a cross section of fiber reinforced concrete (FRC) elements that also include longitudinal bars for the flexural reinforcement (R/FRC). Since a stress–crack width relationship (σ–w)(σ–w) is used to model the post-cracking behavior of a FRC, the σ–w directly obtained from tensile tests, or derived from inverse analysis applied to the results obtained in three-point notched beam bending tests, can be adopted in this approach. For a more realistic assessment of the crack opening, a bond stress versus slip relationship is assumed to simulate the bond between longitudinal bars and surrounding FRC. To simulate the compression behavior of the FRC, a shear friction model is adopted based on the physical interpretation of the post-peak compression softening behavior registered in experimental tests. By allowing the formation of a compressive FRC wedge delimited by shear band zones, the concept of concrete crushing failure mode in beams failing in bending is reinterpreted. By using the moment–rotation relationship, an algorithm was developed to determine the force–deflection response of statically determinate R/FRC elements. The model is described in detail and its good predictive performance is demonstrated by using available experimental data. Parametric studies were executed to evidence the influence of relevant parameters of the model on the serviceability and ultimate design conditions of R/FRC elements failing in bending.
Resumo:
Dissertação de mestrado integrado em Engenharia Mecânica
Resumo:
Cartilage tissue is a complex nonlinear, viscoelastic, anisotropic, and multiphasic material with a very low coefficient of friction, which allows to withstand millions of cycles of joint loading over decades of wear. Upon damage, cartilage tissue has a low self-reparative capacity due to the lack of neural connections, vascularization, and a latent pool of stem/chondroprogenitor cells. Therefore, the healing of articular cartilage defects remains a significant clinical challenge, affecting millions of people worldwide. A plethora of biomaterials have been proposed to fabricate devices for cartilage regeneration, assuming a wide range of forms and structures, such as sponges, hydrogels, capsules, fibers, and microparticles. In common, the fabricated devices were designed taking in consideration that to fully achieve the regeneration of functional cartilage it is mandatory a well-orchestrated interplay of biomechanical properties, unique hierarchical structures, extracellular matrix (ECM), and bioactive factors. In fact, the main challenge in cartilage tissue engineering is to design an engineered device able to mimic the highly organized zonal architecture of articular cartilage, specifically its spatiomechanical properties and ECM composition, while inducing chondrogenesis, either by the proliferation of chondrocytes or by stimulating the chondrogenic differentiation of stem/chondro-progenitor cells. In this chapter we present the recent advances in the development of innovative and complex biomaterials that fulfill the required structural key elements for cartilage regeneration. In particular, multiphasic, multiscale, multilayered, and hierarchical strategies composed by single or multiple biomaterials combined in a welldefined structure will be addressed. Those strategies include biomimetic scaffolds mimicking the structure of articular cartilage or engineered scaffolds as models of research to fully understand the biological mechanisms that influence the regeneration of cartilage tissue.
Resumo:
Dissertação de mestrado integrado em Engenharia Mecânica
Resumo:
Dissertação de mestrado integrado em Engenharia Mecânica
Resumo:
Dissertação de mestrado integrado em Engenharia de Materiais