11 resultados para Skin tissue engineeringSkin substitutesIn vitro test system
em Universidade do Minho
Resumo:
Publicado em "Journal of tissue engineering and regenerative medicine". Vol. 8, suppl. s1 (2014)
Resumo:
Tese de Doutoramento em Engenharia de Tecidos, Medicina Regenerativa e Células Estaminais.
Resumo:
B-Lactoglobulin (b-Lg) is the major protein fraction of bovine whey serum and a primary gelling agent. b-Lg has a high nutritional value, is stable at low pH being highly resistant to proteolytic degradation in the stomach, besides, it has the ability of acting as an encapsulating agent. This study aims at assessing the ability of b-Lg nanostructures to associate a nutraceutical - i.e. riboflavin - and release it in a controlled manner throughout an in vitro gastrointestinal (GI) system. For this reason b-Lg nanostructures loaded with riboflavin were critically characterized in terms of their morphology (i.e. size, polydispersity, -potential and shape) by dynamic light scattering (DLS) and transmission electron microscopy (TEM), and efficiency to associate to riboflavin through spectrofluorimetry. Furthermore, these nanocomplexes were evaluated in an in vitro GI model, simulating the physiological conditions. Stable b-Lg nanostructures were obtained at pH 6, of spherical shape, characterized by particle size of 172±1 nm, low polydispersity (i.e. PDI of 0.06±0.02), -potential of -32±3 mV and association efficiency (AE) of 26±1 %. b-Lg nanostructures showed to be stable upon their passage throughout stomach (i.e. particle size, PDI and potential of 248±10 nm, 0.18±0.03 and 18±3 mV, respectively). Concerning their passage throughout the intestine, such nanostructures were mostly degraded in the duodenum. Regarding riboflavin, a release of about 11 % was observed after their passage through stomach, while 35 %, 38 % and 5 % were the released percentages of the total riboflavin associated observed after passage through duodenum, jejunum and ileum, respectively. Hence,b-Lg nanostructures showed to be suitable carriers for riboflavin until the intestine, where their degradation occurs. b-Lg also showed to be structurally stable, under food simulant conditions (yoghurt simulant, composed of 3 % acetic acid), over 14 days, with a protective effect upon riboflavin activity, releasing it in a 7 day period.
Resumo:
Wharton's jelly stem cells (WJSCs) are a potential source of transplantable stem cells in cartilage-regenerative strategies, due to their highly proliferative and multilineage differentiation capacity. We hypothesized that a non-direct co-culture system with human articular chondrocytes (hACs) could enhance the potential chondrogenic phenotype of hWJSCs during the expansion phase compared to those expanded in monoculture conditions. Primary hWJSCs were cultured in the bottom of a multiwell plate separated by a porous transwell membrane insert seeded with hACs. No statistically significant differences in hWJSCs duplication number were observed under either of the culture conditions during the expansion phase. hWJSCs under co-culture conditions show upregulations of collagen type I and II, COMP, TGFβ1 and aggrecan, as well as of the main cartilage transcription factor, SOX9, when compared to those cultured in the absence of chondrocytes. Chondrogenic differentiation of hWJSCs, previously expanded in co-culture and monoculture conditions, was evaluated for each cellular passage using the micromass culture model. Cells expanded in co-culture showed higher accumulation of glycosaminoglycans (GAGs) compared to cells in monoculture, and immunohistochemistry for localization of collagen type I revealed a strong detection signal when hWJSCs were expanded under monoculture conditions. In contrast, type II collagen was detected when cells were expanded under co-culture conditions, where numerous round-shaped cell clusters were observed. Using a micromass differentiation model, hWJSCs, previously exposed to soluble factors secreted by hACs, were able to express higher levels of chondrogenic genes with deposition of cartilage extracellular matrix components, suggesting their use as an alternative cell source for treating degenerated cartilage.
Resumo:
Cell/cell-extracellular matrix (ECM) dynamic interactions appear to have a major role in regulating communication through soluble signaling, directing cell binding and activating substrates that participate in the highly organized wound healing process. Moreover, these interactions are also crucial for in vitro mimicking cutaneous physiology. Herein we explore cell sheet (CS) engineering to create cellular constructs formed by keratinocytes (hKC), fibroblasts (hDFB) and dermal microvascular endothelial cells (hDMEC), to target skin wound healing but also the in vitro recreation of relevant models. Taking advantage of temperature-responsive culture surfaces, which allow harvesting cultured cells as intact sheets along with the deposited native ECM, varied combinations of homotypic and heterotypic three-dimensional (3-D) CS-based constructs were developed. Constructs combining one CS of keratinocytes as an epidermis-like layer plus a vascularized dermis composed by hDFB and hDMECs were assembled as skin analogues for advancing in vitro testing. Simultaneously both hKC and hDMEC were shown to significantly contribute to the re-epithelialization of full-thickness mice skin wounds by promoting an early epithelial coverage, while hDMEC significantly lead to increased vessels density, incorporating the neovasculature. Thus, although determined by the cellular nature of the constructs, these outcomes demonstrated that CS engineering appear as an unique technology that open the possibility to create numerous combinations of 3D constructs to target defective wound healing as well as the construction of in vitro models to further mimic cutaneous functions crucial for drug screening and cosmetic testing assays.
Resumo:
The development of novel strengthening techniques to address the seismic vulnerability of masonry elements is gradually leading to simpler, faster and more effective strengthening strategies. In particular, the use of fabric reinforced cementitious matrix systems is considered of great potential, given the increase of ductility achieved with simple and economic strengthening procedures. To assess the effectiveness of these strengthening systems, and considering that the seismic action is involved, one important component of the structural behaviour is the in-plane cyclic response. In this work is discussed the applicability of the diagonal tensile test for the assessment of the cyclic response of strengthened masonry. The results obtained allowed to assess the contribution of the strengthening system to the increase of the load carrying capacity of masonry elements, as well as to evaluate the damage evolution and the stiffness degradation mechanisms developing under cyclic loading.
Resumo:
Polymeric scaffolds used in regenerative therapies are implanted in the damaged tissue and subjected to repeated loading cycles. In the case of articular cartilage engineering, an implanted scaffold is typically subjected to long term dynamic compression. The evolution of the mechanical properties of the scaffold during bioresorption has been deeply studied in the past, but the possibility of failure due to mechanical fatigue has not been properly addressed. Nevertheless, the macroporous scaffold is susceptible to failure after repeated loading-unloading cycles. In this work fatigue studies of polycaprolactone scaffolds were carried by subjecting the scaffold to repeated compression cycles in conditions simulating the scaffold implanted in the articular cartilage. The behaviour of the polycaprolactone sponge with the pores filled with a poly(vinyl alcohol) gel simulating the new formed tissue within the pores was compared with that of the material immersed in water. Results were analyzed with Morrow’s criteria for failure and accurate fittings are obtained just up to 200 loading cycles. It is also shown that the presence of poly(vinyl alcohol) increases the elastic modulus of the scaffolds, the effect being more pronounced with increasing the number of freeze/thawing cycles.
Resumo:
Gold nanorods (AuNRs) have emerged as an exceptional nanotool for a myriad of applications ranging from cancer therapy to tissue engineering. However, their surface modification with biocompatible and stabilizing biomaterials is crucial to allow their use in a biological environment. Herein, low-acyl gellan gum (GG) was used to coat AuNRs surface, taking advantage of its stabilizing, biocompatible and gelling features. The layer-by-layer based strategy implied the successive deposition of poly(acrylic acid), poly(allylamine hydrochloride) and GG, which allowed the formation of a GG hydrogel-like shell with 7 nm thickness around individual AuNRs. Stability studies in a wide range of pH and salt concentrations showed that the polysaccharide coating can prevent AuNRs aggregation. Moreover, a reversible pH-responsive feature of the nanoparticles was observed. Cytocompatibility and osteogenic ability of GG-coated AuNRs was also addressed. After 14 days of culturing within SaOS-2, an osteoblast-like cell line, in vitro studies revealed that AuNRs-GG exhibit no cytotoxicity, were internalized by the cells and localized inside lysosomes. AuNRs-GG combined with osteogenic media enhanced the mineralization capacity two-fold, as compared to cells exposed to osteogenic media alone. The proposed system has shown interesting features for osteogenesis, and further insights might be relevant for drug delivery, tissue engineering and regenerative medicine.
Resumo:
Cell sheet (CS) engineering, taking advantage of cellular self-matrix organized as in native tissue, has been largely explored, including by us, for different purposes [1â 3]. Herein we propose for the ï¬ rst time, the use of human adipose stem cells (hASCs)-derived CS to create adipose tissue analogues with different levels of maturation. hASCs were cultured on UpCellTM thermo-responsive dishes for 1, 3 and 5 days under basal conditions previously established by us [3]. The inï¬ uence of pre-differentiation time and respective cell number, over CS stability and differentiation was assessed. Mechanically robust CS were only obtained with 5 days pre-differentiation period. Adipogenesis was followed along the culture assessing the variation of expression of mesenchymal (CD73, CD105 but not CD90) and adipogenic (PPARg, FABP4 and LPL) markers by ï¬ ow cytometry, immunocytochemistry and RT-PCR. Increased ratio of differentiated cells was achieved for longer pre-differentiation periods, while maturation degree was modulated by the maintenance medium. Independently of the overall CS differentiation/maturation level, 3D constructs were fabricated by stacking and further culturing 3 CS. Thus, by varying the culture conditions, different 3D adipose tissue-like microenvironments were recreated, enabling future development of new tissue engineering strategies, as well as further study of adipose tissue role in the regeneration of different tissues.
Resumo:
Due to the limited self-repair capacity of cartilage, regenerative medicine therapies for the treatment of cartilage defects must use a significant amount of cells, preferably applied using a hydrogel system that can promise their delivery and functionality at the specific site. This paper discusses the potential use of k-carrageenan hydrogels for the delivery of stem cells obt ained from adipose tissue in the treatment of cartilage tissue defects. The developed hydrogels were produced by an ionotropic gelation met hod and human adipose stem cells (hASCs) were encapsulated in 1.5% w/v k-carrageenan solution at a cell density of 5 10 6 cells/ml. The results from the analysis of the cell-encapsulating hydrogels, cultured for up to 21 days, indicated that k-carrageenan hydrogels support the viability, proliferation and chondrogenic differentiation of hASCs. Additionally, the mec hanical analysis demonstrated an increase in stiffness and viscoelastic properties of k-carrageenan gels with their encapsulated cells with increasing time in culture with chondrogenic medium. These results allowed the conclusion that k-carrageenan exhibits properties t hat enable the in vitro functionality of encapsulated hASCs and thus may provide the basis for new successful approaches for the treatment of cartilage defects.
Resumo:
Membrane-like scaffolds are suitable to induce regeneration in many and different anatomic sites, such as periodontal membrane, skin, liver and cardiac tissues. In some circumstances, the films should adapt to geometrical changes of the attached tissues, such as in cardiac or blood vessel tissue engineering applications. In this context, we developed stretchable two-dimensional multilayer constructs through the assembling of two natural-based polyelectrolytes, chitosan (CHT) and chondroitin sulphate (CS), using the layer-by-layer methodology. The morphology, topography and the transparency of the films were evaluated. The in- fluence of genipin, a natural-derived cross-linker agent, was also investigated in the control of the mechanical properties of the CHT/CS films. The water uptake ability can be tailored by changing the cross-linker concentration, which influenced the young modulus and ultimate tensile strength. The maximum extension tends to decrease with the increase of genipin concentration, compromising the elastic properties of CHT/CS films: nevertheless using lower cross-linker contents, the ultimate tensile stress is similar to the films not cross-linked but exhibiting a significant higher modulus. The in vitro biological assays showed better L929 cell adhesion and proliferation when using the crosslinked membranes and confirmed the non-cytotoxicity of the CHT/CS films. The developed free-standing biomimetic multilayer could be designed to fulfill specific therapeutic requirements by tuning properties such as swelling, mechanical and biological performances.