8 resultados para Sigurd I Jórsalafari, king of Norway, 1090-1130.

em Universidade do Minho


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The assessment of concrete mechanical properties during construction of concrete structures is of paramount importance for many intrinsic operations. However many of the available non-destructive methods for mechanical properties have limitations for use in construction sites. One of such methodologies is EMM-ARM, which is a variant of classic resonant frequency methods. This paper aims to demonstrate the efforts towards in-situ applicability of EMMARM, as to provide real-time information about concrete mechanical properties such as E-modulus and compressive strength. To achieve the aforementioned objective, a set of adaptations to the method have been successfully implemented and tested: (i) the reduction of the beam span; (ii) the use of a different mould material and (iii) a new support system for the beams. Based on these adaptations, a reusable mould was designed to enable easier systematic use of EMMARM. A pilot test was successfully performed under in-situ conditions during a bridge construction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The MAP-i Doctoral Program of the Universities of Minho, Aveiro and Porto

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The MAP-i Doctoral Program of the Universities of Minho, Aveiro and Porto

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The exceptional properties of localised surface plasmons (LSPs), such as local field enhancement and confinement effects, resonant behavior, make them ideal candidates to control the emission of luminescent nanoparticles. In the present work, we investigated the LSP effect on the steady-state and time-resolved emission properties of quantum dots (QDs) by organizing the dots into self-assembled dendrite structures deposited on plasmonic nanostructures. Self-assembled structures consisting of water-soluble CdTe mono-size QDs, were developed on the surface of co-sputtered TiO2 thin films doped with Au nanoparticles (NPs) annealed at different temperatures. Their steady-state fluorescence properties were probed by scanning the spatially resolved emission spectra and the energy transfer processes were investigated by the fluorescence lifetime imaging (FLIM) microscopy. Our results indicate that a resonant coupling between excitons confined in QDs and LSPs in Au NPs located beneath the self-assembled structure indeed takes place and results in (i) a shift of the ground state luminescence towards higher energies and onset of emission from excited states in QDs, and (ii) a decrease of the ground state exciton lifetime (fluorescence quenching).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de mestrado em Ecology

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hind-limb ischemia has been used in type 1 diabetic mice to evaluate treatments for peripheral arterial disease or mechanisms of vascular impairment in diabetes [1]. Vascular deficiency is not only a pathophysiological condition, but also an obvious circumstance in tissue regeneration and in tissue engineering and regenerative medicine (TERM) strategies. We performed a pilot experiment of hind-limb ischemia in streptozotocin(STZ)-induced type 1 diabetic mice to hypothesise whether diabetes influences neovascularization induced by biomaterials. The dependent variables included blood flow and markers of arteriogenesis and angiogenesis. Type 1 diabetes was induced in 8-week-old C57BL/6 mice by an i.p. injection of STZ (50 mg/kg daily for 5 days). Hind-limb ischemia was created under deep anaesthesia and the left femoral artery and vein were isolated, ligated, and excised. The contralateral hind limb served as an internal control within each mouse. Non-diabetic ischaemic mice were used as experiment controls. At the hind-limb ischemia surgical procedure, different types of biomaterials were placed in the blood vessels gap. Blood flow was estimated by Laser Doppler perfusion imager, right after surgery and then weekly. After 28 days of implantation, surrounding muscle was excised and evaluated by histological analysis for arteriogenesis and angiogenesis. The results showed that implanted biomaterials were promote faster restoration of blood flow in the ischemic limbs and improved neovascularization in the diabetic mice. Therefore, we herein demonstrate that the combined model of hind-limb ischemia in type 1 diabetes mice is suitable to evaluate the neovascularization potential of biomaterials and eventually tissue engineering constructs.  

Relevância:

100.00% 100.00%

Publicador:

Resumo:

B-Lactoglobulin (b-Lg) is the major protein fraction of bovine whey serum and a primary gelling agent. b-Lg has a high nutritional value, is stable at low pH being highly resistant to proteolytic degradation in the stomach, besides, it has the ability of acting as an encapsulating agent. This study aims at assessing the ability of b-Lg nanostructures to associate a nutraceutical - i.e. riboflavin - and release it in a controlled manner throughout an in vitro gastrointestinal (GI) system. For this reason b-Lg nanostructures loaded with riboflavin were critically characterized in terms of their morphology (i.e. size, polydispersity, -potential and shape) by dynamic light scattering (DLS) and transmission electron microscopy (TEM), and efficiency to associate to riboflavin through spectrofluorimetry. Furthermore, these nanocomplexes were evaluated in an in vitro GI model, simulating the physiological conditions. Stable b-Lg nanostructures were obtained at pH 6, of spherical shape, characterized by particle size of 172±1 nm, low polydispersity (i.e. PDI of 0.06±0.02), -potential of -32±3 mV and association efficiency (AE) of 26±1 %. b-Lg nanostructures showed to be stable upon their passage throughout stomach (i.e. particle size, PDI and potential of 248±10 nm, 0.18±0.03 and 18±3 mV, respectively). Concerning their passage throughout the intestine, such nanostructures were mostly degraded in the duodenum. Regarding riboflavin, a release of about 11 % was observed after their passage through stomach, while 35 %, 38 % and 5 % were the released percentages of the total riboflavin associated observed after passage through duodenum, jejunum and ileum, respectively. Hence,b-Lg nanostructures showed to be suitable carriers for riboflavin until the intestine, where their degradation occurs. b-Lg also showed to be structurally stable, under food simulant conditions (yoghurt simulant, composed of 3 % acetic acid), over 14 days, with a protective effect upon riboflavin activity, releasing it in a 7 day period.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Supplementary Material for this article can be found online at: http://journal.frontiersin.org/article/10.3389/fmicb. 2016.00390