9 resultados para Sensory integration
em Universidade do Minho
Resumo:
Programa Doutoral em Engenharia Têxtil.
Resumo:
This paper aims at developing a collision prediction model for three-leg junctions located in national roads (NR) in Northern Portugal. The focus is to identify factors that contribute for collision type crashes in those locations, mainly factors related to road geometric consistency, since literature is scarce on those, and to research the impact of three modeling methods: generalized estimating equations, random-effects negative binomial models and random-parameters negative binomial models, on the factors of those models. The database used included data published between 2008 and 2010 of 177 three-leg junctions. It was split in three groups of contributing factors which were tested sequentially for each of the adopted models: at first only traffic, then, traffic and the geometric characteristics of the junctions within their area of influence; and, lastly, factors which show the difference between the geometric characteristics of the segments boarding the junctionsâ area of influence and the segment included in that area were added. The choice of the best modeling technique was supported by the result of a cross validation made to ascertain the best model for the three sets of researched contributing factors. The models fitted with random-parameters negative binomial models had the best performance in the process. In the best models obtained for every modeling technique, the characteristics of the road environment, including proxy measures for the geometric consistency, along with traffic volume, contribute significantly to the number of collisions. Both the variables concerning junctions and the various national highway segments in their area of influence, as well as variations from those characteristics concerning roadway segments which border the already mentioned area of influence have proven their relevance and, therefore, there is a rightful need to incorporate the effect of geometric consistency in the three-leg junctions safety studies.
Resumo:
When interacting with each other, people often synchronize spontaneously their movements, e.g. during pendulum swinging, chair rocking[5], walking [4][7], and when executing periodic forearm movements[3].Although the spatiotemporal information that establishes the coupling, leading to synchronization, might be provided by several perceptual systems, the systematic study of different sensory modalities contribution is widely neglected. Considering a) differences in the sensory dominance on the spatial and temporal dimension[5] , b) different cue combination and integration strategies [1][2], and c) that sensory information might provide different aspects of the same event, synchronization should be moderated by the type of sensory modality. Here, 9 naïve participants placed a bottle periodically between two target zones, 40 times, in 12 conditions while sitting in front of a confederate executing the same task. The participant could a) see and hear, b) see , c) hear the confederate, d) or audiovisual information about the movements of the confederate was absent. The couple started in 3 different relative positions (i.e., in-phase, anti-phase, out of phase). A retro-reflective marker was attached to the top of the bottles. Bottle displacement was captured by a motion capture system. We analyzed the variability of the continuous relative phase reflecting the degree of synchronization. Results indicate the emergence of spontaneous synchronization, an increase with bimodal information, and an influence of the initial phase relation on the particular synchronization pattern. Results have theoretical implication for studying cue combination in interpersonal coordination and are consistent with coupled oscillator models.
Resumo:
Transcriptional Regulatory Networks (TRNs) are powerful tool for representing several interactions that occur within a cell. Recent studies have provided information to help researchers in the tasks of building and understanding these networks. One of the major sources of information to build TRNs is biomedical literature. However, due to the rapidly increasing number of scientific papers, it is quite difficult to analyse the large amount of papers that have been published about this subject. This fact has heightened the importance of Biomedical Text Mining approaches in this task. Also, owing to the lack of adequate standards, as the number of databases increases, several inconsistencies concerning gene and protein names and identifiers are common. In this work, we developed an integrated approach for the reconstruction of TRNs that retrieve the relevant information from important biological databases and insert it into a unique repository, named KREN. Also, we applied text mining techniques over this integrated repository to build TRNs. However, was necessary to create a dictionary of names and synonyms associated with these entities and also develop an approach that retrieves all the abstracts from the related scientific papers stored on PubMed, in order to create a corpora of data about genes. Furthermore, these tasks were integrated into @Note, a software system that allows to use some methods from the Biomedical Text Mining field, including an algorithms for Named Entity Recognition (NER), extraction of all relevant terms from publication abstracts, extraction relationships between biological entities (genes, proteins and transcription factors). And finally, extended this tool to allow the reconstruction Transcriptional Regulatory Networks through using scientific literature.
Resumo:
Olive oils may be commercialized as intense, medium or light, according to the intensity perception of fruitiness, bitterness and pungency attributes, assessed by a sensory panel. In this work, the capability of an electronic tongue to correctly classify olive oils according to the sensory intensity perception levels was evaluated. Cross-sensitivity and non-specific lipid polymeric membranes were used as sensors. The sensor device was firstly tested using quinine monohydrochloride standard solutions. Mean sensitivities of 14±2 to 25±6 mV/decade, depending on the type of plasticizer used in the lipid membranes, were obtained showing the device capability for evaluating bitterness. Then, linear discriminant models based on sub-sets of sensors, selected by a meta-heuristic simulated annealing algorithm, were established enabling to correctly classify 91% of olive oils according to their intensity sensory grade (leave-one-out cross-validation procedure). This capability was further evaluated using a repeated K-fold cross-validation procedure, showing that the electronic tongue allowed an average correct classification of 80% of the olive oils used for internal-validation. So, the electronic tongue can be seen as a taste sensor, allowing differentiating olive oils with different sensory intensities, and could be used as a preliminary, complementary and practical tool for panelists during olive oil sensory analysis.
Resumo:
Olive oil quality grading is traditionally assessed by human sensory evaluation of positive and negative attributes (olfactory, gustatory, and final olfactorygustatory sensations). However, it is not guaranteed that trained panelist can correctly classify monovarietal extra-virgin olive oils according to olive cultivar. In this work, the potential application of human (sensory panelists) and artificial (electronic tongue) sensory evaluation of olive oils was studied aiming to discriminate eight single-cultivar extra-virgin olive oils. Linear discriminant, partial least square discriminant, and sparse partial least square discriminant analyses were evaluated. The best predictive classification was obtained using linear discriminant analysis with simulated annealing selection algorithm. A low-level data fusion approach (18 electronic tongue signals and nine sensory attributes) enabled 100 % leave-one-out cross-validation correct classification, improving the discrimination capability of the individual use of sensor profiles or sensory attributes (70 and 57 % leave-one-out correct classifications, respectively). So, human sensory evaluation and electronic tongue analysis may be used as complementary tools allowing successful monovarietal olive oil discrimination.
Resumo:
This paper presents microlenses (MLs) with low f-number made of AZ4562 photoresist for integration on optical microsystems. The fabrication process was based on the thermal reflow and rehydration. Large series of MLs were fabricated with a width of 35 μm, a thickness of 5 μm, and spaced apart by 3 μm. The MLs were fabricated directly on the surface of a die with type n+/p-substrate junction photodiode fabricated in a standard CMOS process. The measured focal length was 49 μm with a tolerance of ±2 μm (maximum error of ±4%), resulting in a numerical aperture of 33.6 × 10-2 (±1.3 × 10-2). The measurements also revealed an f-number of 1.4.
Resumo:
In this paper we consider the approximate computation of isospectral flows based on finite integration methods( FIM) with radial basis functions( RBF) interpolation,a new algorithm is developed. Our method ensures the symmetry of the solutions. Numerical experiments demonstrate that the solutions have higher accuracy by our algorithm than by the second order Runge- Kutta( RK2) method.
Resumo:
"Series title: Springerbriefs in applied sciences and technology, ISSN 2191-530X"