3 resultados para Saturation of transferrin
em Universidade do Minho
Resumo:
Dissertação de mestrado integrado em Engenharia Civil
Resumo:
A series of colloidal MxFe3-xO4 (M = Mn, Co, Ni; x = 0–1) nanoparticles with diameters ranging from 6.8 to 11.6 nm was synthesized by hydrothermal reaction in aqueous medium at low temperature (200 °C). Energy-dispersive X-ray microa-nalysis and inductively coupled plasma spectrometry confirms that the actual elemental compositions agree well with the nominal ones. The structural properties of obtained nanoparticles were investigated by using powder X-ray diffraction, Raman scattering, Mössbauer spectroscopy, and electron microscopy. The results demonstrate that our synthesis technique leads to the formation of chemically uniform single-phase solid solution nanoparticles with cubic spinel structure, confirming the intrinsic doping. Magnetic studies showed that, in comparison to Fe3O4, the saturation magnetization of MxFe3-xO4 (M = Mn, Ni) decreases with increasing dopant concentration, while Co-doped samples showed similar saturation magnetizations. On other hand, whereas Mn- and Ni-doped nanoparticles exhibits superparamagnetic behavior at room temperature, ferromagnetism emerges for CoxFe3-xO4 nanoparticles, which can be tuned by the level of Co doping.
Resumo:
A precise estimation of the postmortem interval (PMI) is one of the most important topics in forensic pathology. However, the PMI estimation is based mainly on the visual observation of cadaverous pheno- mena (e.g. algor, livor and rigor mortis) and on alternative methods such as thanatochemistry that remain relatively imprecise. The aim of this in vitro study was to evaluate the kinetic alterations of several bio- chemical parameters (i.e. proteins, enzymes, substrates, electrolytes and lipids) during putrefaction of human blood. For this purpose, we performed kinetic biochemical analysis during a 264 hour period. The results showed a significant linear correlation between total and direct bilirubin, urea, uric acid, transferrin, immunoglobulin M (IgM), creatine kinase (CK), aspartate transaminase (AST), calcium and iron with the time of blood putrefaction. These parameters allowed us to develop two mathematical models that may have predictive values and become important complementary tools of traditional methods to achieve a more accurate PMI estimation