58 resultados para STRUCTURAL TESTING CRITERIA

em Universidade do Minho


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work aimed to assess the early-age evolution of E-modulus of epoxy adhesives used for Fibre-Reinforced Polymer (FRP) strengthening applications. The study involved adapting an existing technique devised for continuous monitoring of concrete stiffness since casting, called EMM-ARM (Elasticity Modulus Measurement through Ambient Response Method) for evaluation of epoxy stiffness. Furthermore, monotonic tensile tests according to ISO standards and cyclic tensile tests were carried out at several ages. A comparison between the obtained results was performed in order to better understand the performance of the several techniques in the assessment of stiffness of epoxy resins. When compared to the other methodologies, the method for calculation of E-modulus recommended by ISO standard led to lower values, since in the considered strain interval, the adhesive had a non-linear stress–strain relationship. The EMM-ARM technique revealed its capability in clearly identifying the hardening kinetics of epoxy adhesives, measuring the material stiffness growth during the entire curing period. At very early ages the values of Young׳s modulus obtained with quasi-static tests were lower than the values collected by EMM-ARM, due to the fact that epoxy resin exhibited a significant visco-elastic behaviour.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Earthworks tasks aim at levelling the ground surface at a target construction area and precede any kind of structural construction (e.g., road and railway construction). It is comprised of sequential tasks, such as excavation, transportation, spreading and compaction, and it is strongly based on heavy mechanical equipment and repetitive processes. Under this context, it is essential to optimize the usage of all available resources under two key criteria: the costs and duration of earthwork projects. In this paper, we present an integrated system that uses two artificial intelligence based techniques: data mining and evolutionary multi-objective optimization. The former is used to build data-driven models capable of providing realistic estimates of resource productivity, while the latter is used to optimize resource allocation considering the two main earthwork objectives (duration and cost). Experiments held using real-world data, from a construction site, have shown that the proposed system is competitive when compared with current manual earthwork design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper addresses the challenging task of computing multiple roots of a system of nonlinear equations. A repulsion algorithm that invokes the Nelder-Mead (N-M) local search method and uses a penalty-type merit function based on the error function, known as 'erf', is presented. In the N-M algorithm context, different strategies are proposed to enhance the quality of the solutions and improve the overall efficiency. The main goal of this paper is to use a two-level factorial design of experiments to analyze the statistical significance of the observed differences in selected performance criteria produced when testing different strategies in the N-M based repulsion algorithm. The main goal of this paper is to use a two-level factorial design of experiments to analyze the statistical significance of the observed differences in selected performance criteria produced when testing different strategies in the N-M based repulsion algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação de mestrado em Structural Analysis of Monuments and Historical Constructions

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Auxetic materials are a class of materials behaves unusual way compared to regular materials i.e. possess negative Poisson’s ratio. This paper reports, the development of auxetic structures based on re-entrant hexagon design from braided composite materials and testing of the mechanical properties (tensile property, auxetic property and work of rupture). The structure developed from glass and basalt braided composite rods and properties were compared between them. Later, the basic re-entrant hexagon design was modified with vertical straight rods to improve their mechanical behavior and their auxetic property was studied. Auxetic behavior of these structures was studied in a tensile testing machine taking video during testing by Digital camera, later the video converted into images to measure the strain values using simple software, ImageJ. Along with experimental work, analytical model was used to calculate the Poisson’s ratio of basic structure and results were compared

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The assessment of existing timber structures is often limited to information obtained from non or semi destructive testing, as mechanical testing is in many cases not possible due to its destructive nature. Therefore, the available data provides only an indirect measurement of the reference mechanical properties of timber elements, often obtained through empirical based correlations. Moreover, the data must result from the combination of different tests, as to provide a reliable source of information for a structural analysis. Even if general guidelines are available for each typology of testing, there is still a need for a global methodology allowing to combine information from different sources and infer upon that information in a decision process. In this scope, the present work presents the implementation of a probabilistic based framework for safety assessment of existing timber elements. This methodology combines information gathered in different scales and follows a probabilistic framework allowing for the structural assessment of existing timber elements with possibility of inference and updating of its mechanical properties, through Bayesian methods. The probabilistic based framework is based in four main steps: (i) scale of information; (ii) measurement data; (iii) probability assignment; and (iv) structural analysis. In this work, the proposed methodology is implemented in a case study. Data was obtained through a multi-scale experimental campaign made to old chestnut timber beams accounting correlations of non and semi-destructive tests with mechanical properties. Finally, different inference scenarios are discussed aiming at the characterization of the safety level of the elements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within the civil engineering field, the use of the Finite Element Method has acquired a significant importance, since numerical simulations have been employed in a broad field, which encloses the design, analysis and prediction of the structural behaviour of constructions and infrastructures. Nevertheless, these mathematical simulations can only be useful if all the mechanical properties of the materials, boundary conditions and damages are properly modelled. Therefore, it is required not only experimental data (static and/or dynamic tests) to provide references parameters, but also robust calibration methods able to model damage or other special structural conditions. The present paper addresses the model calibration of a footbridge bridge tested with static loads and ambient vibrations. Damage assessment was also carried out based on a hybrid numerical procedure, which combines discrete damage functions with sets of piecewise linear damage functions. Results from the model calibration shows that the model reproduces with good accuracy the experimental behaviour of the bridge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a methodology based on the Bayesian data fusion techniques applied to non-destructive and destructive tests for the structural assessment of historical constructions. The aim of the methodology is to reduce the uncertainties of the parameter estimation. The Young's modulus of granite stones was chosen as an example for the present paper. The methodology considers several levels of uncertainty since the parameters of interest are considered random variables with random moments. A new concept of Trust Factor was introduced to affect the uncertainty related to each test results, translated by their standard deviation, depending on the higher or lower reliability of each test to predict a certain parameter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the investigation and diagnosis of damages to historical masonry structures, the state of stress of the masonry is an important characteristic that must be determined with as much accuracy as possible. Flat-jack testing is a traditional method used to determine the state of stress in historical masonry structures. However, when irregular masonry is tested the method can cause damage to the masonry units and the accuracy of the method is reduced. An enhanced technique, called tube-jack testing, is being developed at the University of Minho to reduce the damage caused during testing and improve the accuracy when used on irregular masonry. This method uses multiple cylindrical jacks inserted in a line of holes drilled in the mortar joints of the masonry, avoiding damage to the masonry units. Concurrently with the development of tube-jack testing, the effect of stress state on sonic testing is being studied. Sonic testing is often used to determine locations of voids and damage in masonry. The focus of these studies was to determine if the state of stress is influencing the sonic test results. In this paper the results of tube-jack testing and sonic testing on masonry walls, built for the purpose of this study in the laboratory, loaded in compression is presented. The tube-jack testing is used to estimate the state of stress in the masonry and the sonic test results are evaluated based on the effect of the applied load on the wall. Future testing and study are suggested for continued development of these test methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hybrid Composite Plate (HCP) is a reliable recently proposed retrofitting solution for concrete structures, which is composed of a strain hardening cementitious composite (SHCC) plate reinforced with Carbon Fibre Reinforced Polymer (CFRP). This system benefits from the synergetic advantages of these two composites, namely the high ductility of SHCC and the high tensile strength of CFRPs. In the materialstructural of HCP, the ultra-ductile SHCC plate acts as a suitable medium for stress transfer between CFRP laminates (bonded into the pre-sawn grooves executed on the SHCC plate) and the concrete substrate by means of a connection system made by either chemical anchors, adhesive, or a combination thereof. In comparison with traditional applications of FRP systems, HCP is a retrofitting solution that (i) is less susceptible to the detrimental effect of the lack of strength and soundness of the concrete cover in the strengthening effectiveness; (ii) assures higher durability for the strengthened elements and higher protection to the FRP component in terms of high temperatures and vandalism; and (iii) delays, or even, prevents detachment of concrete substrate. This paper describes the experimental program carried out, and presents and discusses the relevant results obtained on the assessment of the performance of HCP strengthened reinforced concrete (RC) beams subjected to flexural loading. Moreover, an analytical approach to estimate the ultimate flexural capacity of these beams is presented, which was complemented with a numerical strategy for predicting their load-deflection behaviour. By attaching HCP to the beams’ soffit, a significant increase in the flexural capacity at service, at yield initiation of the tension steel bars and at failure of the beams can be achieved, while satisfactory deflection ductility is assured and a high tensile capacity of the CFRP laminates is mobilized. Both analytical and numerical approaches have predicted with satisfactory agreement, the load-deflection response of the reference beam and the strengthened ones tested experimentally.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present paper deals with the experimental assessment of the effectiveness of steel fibre reinforcement in terms of punching resistance of centrically loaded flat slabs, and to the development of an analytical model capable of predicting the punching behaviour of this type of structures. For this purpose, eight slabs of 2550 x 2550 x 150 mm3 dimensions were tested up to failure, by investigating the influence of the content of steel fibres (0, 60, 75 and 90 kg/m3) and concrete strength class (50 and 70 MPa). Two reference slabs without fibre reinforcement, one for each concrete strength class, and one slab for each fibre content and each strength class compose the experimental program. All slabs were flexurally reinforced with a grid of ribbed steel bars in a percentage to assure punching failure mode for the reference slabs. Hooked ends steel fibres provided the unique shear reinforcement. The results have revealed that steel fibres are very effective in converting brittle punching failure into ductile flexural failure, by increasing both the ultimate load and deflection, as long as adequate fibre reinforcement is assured. An analytical model was developed based on the most recent concepts proposed by the fib Mode Code 2010 for predicting the punching resistance of flat slabs and for the characterization of the behaviour of fibre reinforced concrete. The most refined version of this model was capable of predicting the punching resistance of the tested slabs with excellent accuracy and coefficient of variation of about 5%.