5 resultados para SQUARE RESONATORS
em Universidade do Minho
Resumo:
Propolis is a chemically complex biomass produced by honeybees (Apis mellifera) from plant resins added of salivary enzymes, beeswax, and pollen. The biological activities described for propolis were also identified for donor plants resin, but a big challenge for the standardization of the chemical composition and biological effects of propolis remains on a better understanding of the influence of seasonality on the chemical constituents of that raw material. Since propolis quality depends, among other variables, on the local flora which is strongly influenced by (a)biotic factors over the seasons, to unravel the harvest season effect on the propolis chemical profile is an issue of recognized importance. For that, fast, cheap, and robust analytical techniques seem to be the best choice for large scale quality control processes in the most demanding markets, e.g., human health applications. For that, UV-Visible (UV-Vis) scanning spectrophotometry of hydroalcoholic extracts (HE) of seventy-three propolis samples, collected over the seasons in 2014 (summer, spring, autumn, and winter) and 2015 (summer and autumn) in Southern Brazil was adopted. Further machine learning and chemometrics techniques were applied to the UV-Vis dataset aiming to gain insights as to the seasonality effect on the claimed chemical heterogeneity of propolis samples determined by changes in the flora of the geographic region under study. Descriptive and classification models were built following a chemometric approach, i.e. principal component analysis (PCA) and hierarchical clustering analysis (HCA) supported by scripts written in the R language. The UV-Vis profiles associated with chemometric analysis allowed identifying a typical pattern in propolis samples collected in the summer. Importantly, the discrimination based on PCA could be improved by using the dataset of the fingerprint region of phenolic compounds ( = 280-400m), suggesting that besides the biological activities of those secondary metabolites, they also play a relevant role for the discrimination and classification of that complex matrix through bioinformatics tools. Finally, a series of machine learning approaches, e.g., partial least square-discriminant analysis (PLS-DA), k-Nearest Neighbors (kNN), and Decision Trees showed to be complementary to PCA and HCA, allowing to obtain relevant information as to the sample discrimination.
Resumo:
Purpose: To evaluate changes in anterior corneal topography and higher-order aberrations (HOA) after 14-days of rigid gas-permeable (RGP) contact lens (CL) wear in keratoconus subjects comparing two different fitting approaches. Methods: Thirty-one keratoconus subjects (50 eyes) without previous history of CL wear were recruited for the study. Subjects were randomly fitted to either an apical-touch or three-pointtouch fitting approach. The lens’ back optic zone radius (BOZR) was 0.4 mm and 0.1 mm flatter than the first definite apical clearance lens, respectively. Differences between the baseline and post-CL wear for steepest, flattest and average corneal power (ACP) readings, central corneal astigmatism (CCA), maximum tangential curvature (KTag), anterior corneal surface asphericity, anterior corneal surface HOA and thinnest corneal thickness measured with Pentacam were compared. Results: A statistically significant flattening was found over time on the flattest and steepest simulated keratometry and ACP in apical-touch group (all p < 0.01). A statistically significant reduction in KTag was found in both groups after contact lens wear (all p < 0.05). Significant reduction was found over time in CCA (p = 0.001) and anterior corneal asphericity in both groups (p < 0.001). Thickness at the thinnest corneal point increased significantly after CL wear (p < 0.0001). Coma-like and total HOA root mean square (RMS) error were significantly reduced following CL wearing in both fitting approaches (all p < 0.05). Conclusion: Short-term rigid gas-permeable CL wear flattens the anterior cornea, increases the thinnest corneal thickness and reduces anterior surface HOA in keratoconus subjects. Apicaltouch was associated with greater corneal flattening in comparison to three-point-touch lens wear.
Resumo:
Olive oil quality grading is traditionally assessed by human sensory evaluation of positive and negative attributes (olfactory, gustatory, and final olfactorygustatory sensations). However, it is not guaranteed that trained panelist can correctly classify monovarietal extra-virgin olive oils according to olive cultivar. In this work, the potential application of human (sensory panelists) and artificial (electronic tongue) sensory evaluation of olive oils was studied aiming to discriminate eight single-cultivar extra-virgin olive oils. Linear discriminant, partial least square discriminant, and sparse partial least square discriminant analyses were evaluated. The best predictive classification was obtained using linear discriminant analysis with simulated annealing selection algorithm. A low-level data fusion approach (18 electronic tongue signals and nine sensory attributes) enabled 100 % leave-one-out cross-validation correct classification, improving the discrimination capability of the individual use of sensor profiles or sensory attributes (70 and 57 % leave-one-out correct classifications, respectively). So, human sensory evaluation and electronic tongue analysis may be used as complementary tools allowing successful monovarietal olive oil discrimination.
Resumo:
Three PEGylated derivatives of 1,4,7,10-tetraazacyclododecane-1-((6-amino)hexanoic)-4,7,10-triacetic acid) (DOTA-AHA) with different molecular weights were prepared and characterized. Their Gd(III) chelates were studied in aqueous solution using variable-temperature 1H nuclear magnetic relaxation dispersion (NMRD) and 17ONMR spectroscopy in view of the determination of their relaxivity and the parameters that govern it. The relaxivity varied from 5.1 to 6.5 mM-1.s-1 (37 ºC and 60 MHz) with the increasing molecular weight of the PEG chain, being slightly higher than that of the parent chelate Gd(DOTA-AHA), due to a small contribution of a slow global rotation of the complexes. A variable temperature 1H NMR study of several Ln(III) chelates of DOTA-A(PEG750)HA allowed the determination of the isomeric M/m ratio (M = square antiprismatic isomer and m = twisted square antiprismatic isomer, the latter presenting a much faster water exchange) which for the Gd(III) chelate was estimated in circa 1:0.2, very close to that of [Gd(DOTA)]-. This explains why the PEGylated Gd(III) chelate has a water rate exchange similar to that of [Gd(DOTA)]-. The predominance of the M isomer is a consequence of the bulky PEG moiety which does not favor the stabilization of the m isomer in sterically crowded systems at the substituent site, contrary to what happens with less packed asymmetrical DOTA-type chelates with substitution in one of the four acetate C(α) atoms.
Resumo:
Dissertação de mestrado integrado em Engenharia e Gestão de Sistemas de Informação