5 resultados para SODIUM BIS(2-ETHYLHEXYL) SULFOSUCCINATE
em Universidade do Minho
Resumo:
The use of polymer based magnetoelectric materials for sensing and actuation applications has been the subject of increasing scientific and technological interest. One of the drawbacks to be overcome in this field is to increase the temperature range of application above 100 ºC. In this way, a nanocomposite material composed by a mixture of two aromatic diamines, 1,3-Bis-2-cyano-3-(3 aminophenoxy)phenoxybenzene (diamine 2CN) and 1,3-Bis(3-aminophenoxy)benzene (diamine 0CN) and CoFe2O4 (CFO) nanoparticles was designed, fabricated and successfully tested for high temperature magnetoelectric applications. Results revealed that CFO nanoparticles are well distributed within the 0CN2CN polymer matrix and that the addition of CFO nanoparticles does not significantly alter the polyimides structure. The magnetization response of the composite is determined by the CFO nanoparticle content. The piezoelectric response of the 0CN2CN polymer matrix (≈11 pC.N-1) and the maximum α33 value (0.8mV.cm-1.Oe-1) are stable over time and decrease only when the composite is subjected to temperatures above 130 ºC. Strategies to further improve the ME response are also discussed.
Resumo:
Polymer based scintillator composites have been produced by combining polystyrene (PS) and Gd2O3:Eu3+ scintillator nanoparticles. Polystyrene has been used since it is a flexible and stable binder matrix, resistant to thermal and light deterioration and with suitable optical properties. Gd2O3:Eu3+ has been selected as scintillator material due to its wide band gap, high density and visible light yield. The optical, thermal and electrical characteristics of the composites were studied as a function of filler content, together with their performance as scintillator material. Additionally 1wt.% of 2,5 dipheniloxazol (PPO) and 0.01wt.% of (1,4-bis(2-(5-phenioxazolil))-benzol (POPOP) were introduced in the polymer matrix in order to strongly improve light yield, i.e. the measured intensity of the output visible radiation, under X-ray irradiation. Whereas increasing scintillator filler concentration (from 0.25wt.% to 7.5wt.%) increases scintillator light yield, decreases the optical transparency of the composite. The addition of PPO and POPOP, strongly increased the overall 2 transduction performance of the composite due to specific absorption and re-emission processes. It is thus shown that Gd2O3:Eu3+/PPO/POPOP/PS composites in 0.25 wt.% of scintillator content with fluorescence molecules is suitable for the development of innovate large area X-ray radiation detectors with huge demand from the industries.
Resumo:
Combining ionic liquids (ILs) with polymers offers the prospect of new applications, where they surpass the performance of conventional media, such as organic solvents, giving advantages in terms of improved safety and a higher operating temperature range. In this work we have investigated the morphology, thermal and electrochemical properties of polymer electrolytes prepared through the addition of con- trolled quantities of the cholinium based IL N,N,N-trimethyl-N-(2-hydroxyethyl)ammonium bis(trifluo- romethylsulfonyl)imide ([N1 1 1 2(OH)] [NTf2]) to a deoxyribonucleic acid (DNA) host network. These novel IL-based electrolytes have been analyzed aiming at applications in electrochemical devices. An optimized sample showed good thermal stability up to 155 °C and a wide electrochemical window of ~3.5 V. The highest conductivity was registered for the DNA[N1 1 1 2(OH)][NTf2] (1:1) (2.82 × 10-5 and 1.09 × 10-3 S cm-1 at 30 and 100 °C, respectively).
Resumo:
Dissertação de mestrado em Química Medicinal
Resumo:
Chlorine is the most commonly used agent for general disinfection, particularly for microbial growth control in drinking water distribution systems. The goals of this study were to understand the effects of chlorine, as sodium hypochlorite (NaOCl), on bacterial membrane physicochemical properties (surface charge, surface tension and hydrophobicity) and on motility of two emerging pathogens isolated from drinking water, Acinetobacter calcoaceticus and Stenotrophomonas maltophilia. The effects of NaOCl on the control of single and dual-species monolayer adhered bacteria (2 h incubation) and biofilms (24 h incubation) was also assessed. NaOCl caused significant changes on the surface hydrophobicity and motility of A. calcoaceticus, but not of S. maltophilia. Planktonic and sessile S. maltophilia were significantly more resistant to NaOCl than A. calcoaceticus. Monolayer adhered co-cultures of A. calcoaceticus-S. maltophilia were more resilient than the single species. Oppositely, dual species biofilms were more susceptible to NaOCl than their single species counterparts. In general, biofilm removal and killing demonstrated to be distinct phenomena: total bacterial viability reduction was achieved even if NaOCl at the higher concentrations had a reduced removal efficacy, allowing biofilm reseed. In conclusion, understanding the antimicrobial susceptibility of microorganisms to NaOCl can contribute to the design of effective biofilm control strategies targeting key microorganisms, such as S. maltophilia, and guarantying safe and high-quality drinking water. Moreover, the results reinforce that biofilms should be regarded as chronic contaminants of drinking water distribution systems and accurate methods are needed to quantify their presence as well as strategies complementary/alternative to NaOCl are required to effectively control the microbiological quality of drinking water.