2 resultados para SIZE-RAMSEY NUMBER
em Universidade do Minho
Resumo:
Poly(vinylidene fluoride) (PVDF) is a biocompatible material with excellent electroactive properties. Non-electroactive α-PVDF and electroactive β-PVDF were used to investigate the substrate polarization and polarity influence on the focal adhesion size and number as well as on human adipose stem cells (hASCs) differentiation. hASCs were cultured on different PVDF surfaces adsorbed with fibronectin and focal adhesion size and number, total adhesion area, cell size, cell aspect ratio and focal adhesion density were estimated using cells expressing EGFP-vinculin. Osteogenic differentiation was also determined using a quantitative alkaline phosphatase assay. The surface charge of the poled PVDF films (positive or negative) influenced the hydrophobicity of the samples, leading to variations in the conformation of adsorbed extracellular matrix (ECM) proteins, which ultimately modulated the stem cell adhesion on the films and induced their osteogenic differentiation.
Resumo:
Tri-layered and bi-layered magnetoelectric (ME) flexible composite structures of varying geometries and sizes consisting on magnetostrictive Vitrovac and piezoelectric poly(vinylidene fluoride) (PVDF) layers were fabricated by direct bonding. From the ME measurements it was determined that tri-layered composites structures (magnetostrictive-piezoelectric-magnetostrictive type), show a higher ME response (75 V.cm-1.Oe-1) than the bi-layer structure (66 V.cm 1.Oe-1). The ME voltage coefficient decreased with increasing longitudinal size aspect ratio between PVDF and Vitrovac layers (from 1.1 to 4.3), being observed a maximum ME voltage coefficient of 66 V.cm-1.Oe-1. It was also observed that the composite with the lowest transversal aspect ratio between PVDF and Vitrovac layers resulted in better ME performance than the structures with higher transversal size aspect ratios. It was further determined an intimate relation between the Vitrovac PVDF Area Area ratio and the ME response of the composites. When such ratio values approach 1, the ME response is the largest. Additionally the ME output value and magnetic field response was controlled by changing the number of Vitrovac layers, which allows the development of magnetic sensors and energy harvesting devices.