4 resultados para SENSORY EXPLOITATION
em Universidade do Minho
Resumo:
An empirical system was developed to obtain a quality index for rock slopes in road infrastructures, named Slope Quality Index (SQI), and it was applied to a set of real slopes.The SQI is supported in nine factors affecting slope stability that contemplate the evaluation of different parameters. Consequently, each factor is classified by the degree of importance and influence by assigned weights. These weights were established through a statistical analysis of replies to a survey that was distributed to several experienced professionals in the field. The proposed SQI varies between1 and 5, corresponding to slopes in very good and very bad condition state, respectively. Besides the advantage linked to a quantitative and qualitative evaluation of slopes, theSQI also allows identifying the most critical factors on the slope stability, which is a fundamental issue for an efficient management of the slope network in the road infrastructure, namely in the planning of conservation and maintenance operations.
Resumo:
Olive oils may be commercialized as intense, medium or light, according to the intensity perception of fruitiness, bitterness and pungency attributes, assessed by a sensory panel. In this work, the capability of an electronic tongue to correctly classify olive oils according to the sensory intensity perception levels was evaluated. Cross-sensitivity and non-specific lipid polymeric membranes were used as sensors. The sensor device was firstly tested using quinine monohydrochloride standard solutions. Mean sensitivities of 14±2 to 25±6 mV/decade, depending on the type of plasticizer used in the lipid membranes, were obtained showing the device capability for evaluating bitterness. Then, linear discriminant models based on sub-sets of sensors, selected by a meta-heuristic simulated annealing algorithm, were established enabling to correctly classify 91% of olive oils according to their intensity sensory grade (leave-one-out cross-validation procedure). This capability was further evaluated using a repeated K-fold cross-validation procedure, showing that the electronic tongue allowed an average correct classification of 80% of the olive oils used for internal-validation. So, the electronic tongue can be seen as a taste sensor, allowing differentiating olive oils with different sensory intensities, and could be used as a preliminary, complementary and practical tool for panelists during olive oil sensory analysis.
Resumo:
Olive oil quality grading is traditionally assessed by human sensory evaluation of positive and negative attributes (olfactory, gustatory, and final olfactorygustatory sensations). However, it is not guaranteed that trained panelist can correctly classify monovarietal extra-virgin olive oils according to olive cultivar. In this work, the potential application of human (sensory panelists) and artificial (electronic tongue) sensory evaluation of olive oils was studied aiming to discriminate eight single-cultivar extra-virgin olive oils. Linear discriminant, partial least square discriminant, and sparse partial least square discriminant analyses were evaluated. The best predictive classification was obtained using linear discriminant analysis with simulated annealing selection algorithm. A low-level data fusion approach (18 electronic tongue signals and nine sensory attributes) enabled 100 % leave-one-out cross-validation correct classification, improving the discrimination capability of the individual use of sensor profiles or sensory attributes (70 and 57 % leave-one-out correct classifications, respectively). So, human sensory evaluation and electronic tongue analysis may be used as complementary tools allowing successful monovarietal olive oil discrimination.
Resumo:
Dissertação de mestrado em Bioengenharia