52 resultados para SENSING APPLICATIONS
em Universidade do Minho
Resumo:
In this work, the thermal stability of TiAgx thin films, deposited by magnetron sputtering, was evaluated, envisaging their application in biomedical devices, namely as electrodes for biosignal acquisition. Based on the composition and microstructural characterization, a set of four representative TiAgx thin films was selected in order to infer whether they are thermally stable in terms of functional properties. In order to achieve this purpose, the structural and morphological evolution of the films with annealing temperature was correlated with their electrical, mechanical and thermal properties. Two distinct zones were identified and two samples from each zone were extensively analysed. In the first zone (zone I), Ti was the main component (Ti-rich zone) while in the second, zone II, the Ag content was more significant. The selected samples were annealed in vacuum at four different temperatures up to 500 oC. For the samples produced within zone I, small microstructural changes were observed due to the recrystallization of the Ti structure and grain size increment. Also, no significant changes were observed with annealing temperature regarding the f l ’ functional properties, being thermally stable up to 500 oC. For higher Ag contents (zone II) the energy supplied by thermal treatments was sufficient to activate the crystallization of Ti-Ag intermetallic phases. A strong increase of the grain size of these phases was also reported. The structural and morphological organization proved to be determinant for the physical responses of the TiAgx system. The hardness and Y g’s modulus were significantly improved with the formation of the intermetallic phases. The silver addition and annealing treatments also played an important role in the electrical conductivity of the films, which was once again improved by the formation of Ti-Ag phases. The thermal diffusivity of the films was practically unchanged with the heat-treatment. This set of results shows that this intermetallic-like thin film system has good thermal stability up to high temperatures (as high as 500 oC), which in case of the highest Ag content zone is particularly evident for electrical and mechanical properties, showing an important improvement. Hardness increases about three times, while resistivity values become half of those from the lowest Ag contents zone. These set of characteristics are consistent with the targeted applications, namely in terms of biomedical sensing devices.
Resumo:
One of the biggest concerns in the Tissue Engineering field is the correct vascularization of engineered constructs. Strategies involving the use of endothelial cells are promising but adequate cell sourcing and neo-vessels stability are enduring challenges. In this work, we propose the hypoxic pre-conditioning of the stromal vascular fraction (SVF) of human adipose tissue to obtain highly angiogenic cell sheets (CS). For that, SVF was isolated after enzymatic dissociation of adipose tissue and cultured until CS formation in normoxic (pO2=21%) and hypoxic (pO2=5%) conditions for 5 and 8 days, in basal medium. Immunocytochemistry against CD31 and CD146 revealed the presence of highly branched capillary-like structures, which were far more complex for hypoxia. ELISA quantification showed increased VEGF and TIMP-1 secretion in hypoxia for 8 days of culture. In a Matrigel assay, the formation of capillary-like structures by endothelial cells was more prominent when cultured in conditioned medium recovered from the cultures in hypoxia. The same conditioned medium increased the migration of adipose stromal cells in a scratch assay, when compared with the medium from normoxia. Histological analysis after implantation of 8 days normoxic- and hypoxic-conditioned SVF CS in a hindlimb ischemia murine model showed improved formation of neo-blood vessels. Furthermore, Laser Doppler results demonstrated that the blood perfusion of the injured limb after 30 days was enhanced for the hypoxic CS group. Overall, these results suggest that SVF CS created under hypoxia can be used as functional vascularization units for tissue engineering and regenerative medicine.
Resumo:
The development of organic materials displaying high two-photon absorption (TPA) has attracted much attention in recent years due to a variety of potential applications in photonics and optoelectronics, such as three-dimensional optical data storage, fluorescence imaging, two-photon microscopy, optical limiting, microfabrication, photodynamic therapy, upconverted lasing, etc. The most frequently employed structural motifs for TPA materials are donor–pi bridge–acceptor (D–pi–A) dipoles, donor–pi bridge–donor (D–pi–D) and acceptor–pi bridge-acceptor (A–pi–A) quadrupoles, octupoles, etc. In this work we present the synthesis and photophysical characterization of quadrupolar heterocyclic systems with potential applications in materials and biological sciences as TPA chromophores. Indole is a versatile building block for the synthesis of heterocyclic systems for several optoelectronic applications (chemosensors, nonlinear optical, OLEDs) due to its photophysical properties and donor electron ability and 4H-pyran-4-ylidene fragment is frequently used for the synthesis of red light-emitting materials. On the other hand, 2-(2,6-dimethyl-4H-pyran-4-ylidene)malononitrile (1) and 1,3-diethyl-dihydro-5-(2,6-dimethyl-4H-pyran-4-ylidene)-2-thiobarbituric (2) units are usually used as strong acceptor moieties for the preparation of π-conjugated systems of the push-pull type. These building blocks were prepared by Knoevenagel condensation of the corresponding ketone precursor with malononitrile or 1,3-diethyl-dihydro-2-thiobarbituric acid. The new quadrupolar 4H-pyran-4-ylidene fluorophores (3) derived from indole were prepared through condensation of 5-methyl-1H-indole-3-carbaldehyde with the acceptor precursors 1 and 2, in the presence of a catalytical amount of piperidine. The new compounds were characterized by the usual spectroscopic techniques (UV-vis., FT-IR and multinuclear NMR - 1H, 13C).
Resumo:
COST (European Co-operation in the field of scientific and technical research) is the longest running framework for research co-operation iri Europe, having been established in 1971 by a Ministerial Conference attended by Ministers for Science and Technology from 19 countries. Today COST is used by the scientific communities of 35 European countries to cooperate in exchanging knowledge and technology developed within research projects supported by national or European funds. The main objective of COST is to contribute to the realization of the European Research Área (ERA) anticipating and complementing the activities of the' Framework Programmes, constituting a "bridge" towards the scientific communities of emerging countries, increasing the mobility of researchers across Europe and fostering the establishment of "Networks of Excelience". Another essential objective is the knowledge transfer between the scientific soc'iety and industry. It is widely acknowledged that European scientific performance in relation to investment in science is excellent but technological and commercial performance has steadily worsened. The present paper discusses how the COST Action's instruments, from training schools to short scientific missions and workshops have been used within The COST ACTION FP11O1 Assessment, Reinforcement and Monitoring of Timber Structures to achieve such objectives.
Resumo:
Hand gestures are a powerful way for human communication, with lots of potential applications in the area of human computer interaction. Vision-based hand gesture recognition techniques have many proven advantages compared with traditional devices, giving users a simpler and more natural way to communicate with electronic devices. This work proposes a generic system architecture based in computer vision and machine learning, able to be used with any interface for human-computer interaction. The proposed solution is mainly composed of three modules: a pre-processing and hand segmentation module, a static gesture interface module and a dynamic gesture interface module. The experiments showed that the core of visionbased interaction systems could be the same for all applications and thus facilitate the implementation. For hand posture recognition, a SVM (Support Vector Machine) model was trained and used, able to achieve a final accuracy of 99.4%. For dynamic gestures, an HMM (Hidden Markov Model) model was trained for each gesture that the system could recognize with a final average accuracy of 93.7%. The proposed solution as the advantage of being generic enough with the trained models able to work in real-time, allowing its application in a wide range of human-machine applications. To validate the proposed framework two applications were implemented. The first one is a real-time system able to interpret the Portuguese Sign Language. The second one is an online system able to help a robotic soccer game referee judge a game in real time.
Resumo:
Dissertação de Mestrado em Engenharia Informática
Resumo:
An exterior body panel solution containing a polydicyclopentadiene skin attached to an interior metallic reinforcement through adhesive bonding is being studied to be applied in the MobiCar bonnet. With this solution is expected to achieve lightness, adequate structural integrity and cost-efficiency. However, there is uncertainty regarding to the bonnet adhesiveness since different metallic materials and adhesive types are being considered for its development. Thus, in this paper, several samples are tested through shear loading with the aim of understanding the loading magnitude expected by using polydicyclopentadiene, steel DC04+ZE and aluminum alloy AW5754-H111 as substrates adhesively bonded by an epoxy or a methacrylate. Methacrylate adhesive have shown greater shear strength in all types of adhesive joints. PDCPD joints presented the highest displacements. Surface degradation was considered adequate over abrading once none strength difference was seen between the different surface treatments. Steel treated by cataphoresis has shown the highest joint interface strength.
Resumo:
The MAP-i Doctoral Program of the Universities of Minho, Aveiro and Porto
Resumo:
The MAP-i Doctoral Program of the Universities of Minho, Aveiro and Porto
Resumo:
The filamentous fungus Ashbya gossypii has been safely and successfully used for more than two decades in the commercial production of riboflavin (vitamin B2). Its industrial relevance combined with its high genetic similarity with Saccharomyces cerevisiae together promoted the accumulation of fundamental knowledge that has been efficiently converted into a significant molecular and in silico toolbox for its genetic engineering. This synergy has enabled a directed and sustained exploitation of A. gossypii as an industrial riboflavin producer. Although there is still room for optimizing riboflavin production, the recent years have seen an abundant advance in the exploration of A. gossypii for other biotechnological applications, such as the production of recombinant proteins, single cell oil and flavour compounds. Here, we will address the biotechnological potential of A. gossypii beyond riboflavin production by presenting (a) a physiological and metabolic perspective over this fungus; (b) the molecular toolbox available for its manipulation; and (c) commercial and emerging biotechnological applications for this industrially important fungus, together with the approaches adopted for its engineering.
Resumo:
Since the last two decades mass spectrometry (MS) has been applied to analyse the chemical cellular components of microorganisms, providing rapid and discriminatory proteomic profiles for their species identification and, in some cases, subtyping. The application of MS for the microbial diagnosis is currently well-established. The remarkable reproducibility and objectivity of this method is based on the measurement of constantly expressed and highly abundant proteins, mainly important conservative ribosomal proteins, which are used as markers to generate a cellular fingerprint. Mass spectrometry based on matrix-assisted laser desorption ionization-time of flight (MALDI- TOF) technique has been an important tool for the microbial diagnostic. However, some technical limitation concerning both MALDI-TOF and its used protocols for sample preparation have fostered the research of new mass spectrometry systems (e.g. LC MS/MS). LC MS/MS is able to generate online mass spectra of specific ions with further online sequencing of these ions, which include both specific proteins and DNA fragments. In this work a set of data for yeasts and filamentous fungi diagnostic obtained through an international collaboration project involving partners from Argentina, Brazil, Chile and Portugal will be presented and discussed.
Resumo:
Tissue engineering often rely on scaffolds for supporting cell differentiation and growth. Novel paradigms for tissue engineering include the need of active or smart scaffolds in order to properly regenerate specific tissues. In particular, as electrical and electromechanical clues are among the most relevant ones in determining tissue functionality in tissues such as muscle and bone, among others, electroactive materials and, in particular, piezoelectric ones, show strong potential for novel tissue engineering strategies, in particular taking also into account the existence of these phenomena within some specific tissues, indicating their requirement also during tissue regeneration. This referee reports on piezoelectric materials used for tissue engineering applications. The most used materials for tissue engineering strategies are reported together with the main achievements, challenges and future needs for research and actual therapies. This review provides thus a compilation of the most relevant results and strategies and a start point for novel research pathways in the most relevant and challenging open questions.
Resumo:
There is an increasing interest in thin and flexible energy storage devices to meet modern society needs for applications such as, radio frequency sensing, interactive packaging and other consumer products. Printed batteries comply these requirements and are an excellent alternative to conventional batteries for many applications. Flexible and micro-batteries are also included in the area of printed batteries whenever fabricated by printing technologies. The main characteristics, advantages, disadvantages, developments, and printing techniques of printed batteries are presented and discussed in this review. The state-of-art takes into account both the research and industrial levels. In the academic one, the research progress of printed batteries is summarized divided in lithium-ion battery (Li-ion), zinc-manganese dioxide (Zn-MnO2), and other battery types with emphasis on the different materials for anode, cathode and separator as well as in the battery design. With respect to the industrial state-of-art, materials, device formulations and manufacturing techniques are presented. Finally, the prospects and challenges of printed batteries are discussed.
Resumo:
Electroactive polymers are one of the most interesting class of polymers used as smart materials in various applications, such as the development of sensors and actuators for biomedical applications in areas such as smart prosthesis, implantable biosensors and biomechanical signal monitoring, among others. For acquiring or applying the electrical signal from/to the piezoelectric material, suitable electrodes can be produced from Ti based coatings with tailored multifunctional properties, conductivity and antibacterial characteristics, through Ag inclusions. This work reports on Ag-TiNx electrodes, deposited by d. c. and pulsed magnetron sputtering at room temperature on poly(vinylidene fluoride), PVDF, the all-round best piezoelectric polymer.. Composition of the electrodes was assessed by microanalysis X-ray system (EDS - energy dispersive spectrometer). The XRD results revealed that the deposition conditions preserve the polymer structure and suggested the presence of crystalline fcc-TiN phase and fcc-Ag phase in samples with N2 flow above 3 sccm. According to the results obtained from SEM analysis, the coatings are homogeneous and Ag clusters were found for samples with nitrogen flow above 3 sccm. With increasing nitrogen flow, the sheet resistivity tend to be lower than the samples without nitrogen, leading also to a decrease of the piezoelectric response. It is concluded that the deposition conditions do significantly affect the piezoelectric polymer, which maintain its characteristics for sensor/actuator applications.
Resumo:
The use of polymer based magnetoelectric materials for sensing and actuation applications has been the subject of increasing scientific and technological interest. One of the drawbacks to be overcome in this field is to increase the temperature range of application above 100 ºC. In this way, a nanocomposite material composed by a mixture of two aromatic diamines, 1,3-Bis-2-cyano-3-(3 aminophenoxy)phenoxybenzene (diamine 2CN) and 1,3-Bis(3-aminophenoxy)benzene (diamine 0CN) and CoFe2O4 (CFO) nanoparticles was designed, fabricated and successfully tested for high temperature magnetoelectric applications. Results revealed that CFO nanoparticles are well distributed within the 0CN2CN polymer matrix and that the addition of CFO nanoparticles does not significantly alter the polyimides structure. The magnetization response of the composite is determined by the CFO nanoparticle content. The piezoelectric response of the 0CN2CN polymer matrix (≈11 pC.N-1) and the maximum α33 value (0.8mV.cm-1.Oe-1) are stable over time and decrease only when the composite is subjected to temperatures above 130 ºC. Strategies to further improve the ME response are also discussed.