5 resultados para SAMPLE INJECTION
em Universidade do Minho
Resumo:
Due to the fact that different injection molding conditions tailor the mechanical response of the thermoplastic material, such effect must be considered earlier in the product development process. The existing approaches implemented in different commercial software solutions are very limited in their capabilities to estimate the influence of processing conditions on the mechanical properties. Thus, the accuracy of predictive simulations could be improved. In this study, we demonstrate how to establish straightforward processing-impact property relationships of talc-filled injection-molded polypropylene disc-shaped parts by assessing the thermomechanical environment (TME). To investigate the relationship between impact properties and the key operative variables (flow rate, melt and mold temperature, and holding pressure), the design of experiments approach was applied to systematically vary the TME of molded samples. The TME is characterized on computer flow simulation outputsanddefined bytwo thermomechanical indices (TMI): the cooling index (CI; associated to the core features) and the thermo-stress index (TSI; related to the skin features). The TMI methodology coupled to an integrated simulation program has been developed as a tool to predict the impact response. The dynamic impact properties (peak force, peak energy, and puncture energy) were evaluated using instrumented falling weight impact tests and were all found to be similarly affected by the imposed TME. The most important molding parameters affecting the impact properties were found to be the processing temperatures (melt andmold). CI revealed greater importance for the impact response than TSI. The developed integrative tool provided truthful predictions for the envisaged impact properties.
Resumo:
In this work we present the thermal characterization of the full scope of polyhydroxyalcanoate and poly(lactic acid) blends obtain by injection molding. Blends of polyhydroxyalcanoate and poly(lactic acid) (PHA/PLA) were prepared in different compositions ranging from 0–100% in steps of 10%. The blends were injection molded and then characterized by differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and wide angle X-ray diffraction (WAXD). The increment of PHA fraction increased the degree of crystallinity of the blend and the miscibility of the base polymers as verified by the Fox model. The WAXD analysis indicates that the presence of PHA hindered the PLA crystallization. The crystallization evolution trough PHA weight fraction (wf) shows a phase inversion around 50-60%. SEM analyses confirmed that the miscibility of PHA/PLA blends increased with the incorporation of PHA and became total for values of PHA higher that 50%.
Resumo:
Dissertação de mestrado em Genética Molecular
Resumo:
Dissertação de mestrado em Técnicas de Caracterização e Análise Química
Resumo:
Background: The Neonatal Behavioral Assessment Scale (NBAS, Brazelton & Nugent, 1995) is an instrument conceived to observe the neonatal neurobehavior. Data analysis is usually performed by organizing items into groups. The most widely used data reduction for the NBAS was developed by Lester, Als, and Brazelton (1982). Objective: Examine the psychometric properties of the NBAS items in a sample of 213 Portuguese infants. Method: The NBAS was performed in the first week of infant life (3 days±2) and in the seventh week of life (52 days±5). Results: Principal component analyses yielded a solution of four components explaining 55.13% of total variance. Construct validity was supported by better neurobehavioral performance of 7-week-old infants compared with 1-week-old infants. Conclusion: Changes in the NBAS structure for the Portuguese sample are suggested compared to Lester factors in order to reach better internal consistency of the scale.