5 resultados para SALMONELLA ENTERICA TYPHIMURIUM

em Universidade do Minho


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dissertação de mestrado em Bioengenharia

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rise of bacterial resistance against important drugs threatens their clinical utility. Fluoroquinones, one of the most important classes of contemporary antibiotics has also reported to suffer bacterial resistance. Since the general mechanism of bacterial resistance against fluoroquinone antibiotics (e.g. ofloxacin) consists of target mutations resulting in reduced membrane permeability and increased efflux by the bacteria, strategies that could increase bacterial uptake and reduce efflux of the drug would provide effective treatment. In the present study, we have compared the efficiencies of ofloxacin delivered in the form of free drug (OFX) and as nanoparticles on bacterial uptake and antibacterial activity. Although both poly(lactic-co-glycolic acid) (OFX-PLGA) and methoxy poly(ethylene glycol)-b-poly(lactic-co-glycolic acid) (OFX-mPEG-PLGA) nanoformulations presented improved bacterial uptake and antibacterial activity against all the tested human bacterial pathogens, namely, Escherichia coli, Proteus vulgaris, Salmonella typhimurium, Pseudomonas aeruginosa, Klebsiella pneumoniae and Staphylococcus aureus, OFX-mPEG-PLGA showed significantly higher bacterial uptake and antibacterial activity compared to OFX-PLGA. We have also found that mPEG-PLGA nanoencapsulation could significantly inhibit Bacillus subtilis resistance development against OFX.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study demonstrates the antibacterial potential of a phage endolysin against Gram-negative pathogens, particularly against multidrug resistant strains of Acinetobacter baumannii. We have cloned, heterologously expressed and characterized a novel endolysin (ABgp46) from Acinetobacter phage vb_AbaP_CEB1 and tested its antibacterial activity against several multidrug-resistant A. baumannii strains. LC-MS revealed that ABgp46 is an N-acetylmuramidase, that is also active over a broad pH range (4.0-10.0) and temperatures up to 50°C. Interestingly, ABgp46 has intrinsic and specific anti-A. baumannii activity, reducing multidrug resistant strains by up to 2 logs within 2 hours. By combining ABgp46 with several organic acids that act as outer membrane permeabilizing agents, it is possible to increase and broaden antibacterial activity to include other Gram-negative bacterial pathogens. In the presence of citric and malic acid, ABgp46 reduces A. baumannii below the detection limit (> 5 log) and more than 4 logs P. aeruginosa and Salmonella Typhimurium strains. Overall, this globular endolysin exhibits a broad and high activity against Gram-negative pathogens, that can be enhanced in presence of citric and malic acid, and be used in human and veterinary medicine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bacteria are central to human health and disease, but existing tools to edit microbial consortia are limited. For example, broad-spectrum antibiotics are unable to precisely manipulate bacterial communities. Bacteriophages can provide highly specific targeting of bacteria, but assembling well-defined phage cocktails solely with natural phages can be a time-, labor- and cost-intensive process. Here, we present a synthetic biology strategy to modulate phage host ranges by engineering phage genomes in Saccharomyces cerevisiae. We used this technology to redirect Escherichia coli phage scaffolds to target pathogenic Yersinia and Klebsiella bacteria, and conversely, Klebsiella phage scaffolds to target E. coli by modular swapping of phage tail components. The synthetic phages achieved efficient killing of their new target bacteria and were used to selectively remove bacteria from multi-species bacterial communities with cocktails based on common viral scaffolds. We envision this approach accelerating phage biology studies and enabling new technologies for bacterial population editing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de mestrado em Bioengenharia