8 resultados para Robotics

em Universidade do Minho


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Series: "Advances in intelligent systems and computing , ISSN 2194-5357, vol. 417"

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eye tracking as an interface to operate a computer is under research for a while and new systems are still being developed nowadays that provide some encouragement to those bound to illnesses that incapacitates them to use any other form of interaction with a computer. Although using computer vision processing and a camera, these systems are usually based on head mount technology being considered a contact type system. This paper describes the implementation of a human-computer interface based on a fully non-contact eye tracking vision system in order to allow people with tetraplegia to interface with a computer. As an assistive technology, a graphical user interface with special features was developed including a virtual keyboard to allow user communication, fast access to pre-stored phrases and multimedia and even internet browsing. This system was developed with the focus on low cost, user friendly functionality and user independency and autonomy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RoboCup was created in 1996 by a group of Japanese, American, and European Artificial Intelligence and Robotics researchers with a formidable, visionary long-term challenge: “By 2050 a team of robot soccer players will beat the human World Cup champion team.” At that time, in the mid 90s, when there were very few effective mobile robots and the Honda P2 humanoid robot was presented to a stunning public for the first time also in 1996, the RoboCup challenge, set as an adversarial game between teams of autonomous robots, was fascinating and exciting. RoboCup enthusiastically and concretely introduced three robot soccer leagues, namely “Simulation,” “Small-Size,” and “Middle-Size,” as we explain below, and organized its first competitions at IJCAI’97 in Nagoya with a surprising number of 100 participants [RC97]. It was the beginning of what became a continously growing research community. RoboCup established itself as a structured organization (the RoboCup Federation www.RoboCup.org). RoboCup fosters annual competition events, where the scientific challenges faced by the researchers are addressed in a setting that is attractive also to the general public. and the RoboCup events are the ones most popular and attended in the research fields of AI and Robotics.RoboCup further includes a technical symposium with contributions relevant to the RoboCup competitions and beyond to the general AI and robotics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[Excerpt] The 11th RoboCup International Symposium was held during July 9–10, 2007 at the Fox Theatre in Atlanta, GA, immediately after the 2007 Soccer, Rescue and Junior Competitions. The RoboCup community has observed an increasing interest from other communities over the past few years, e.g., the robotics community.RoboCupisseenasasignificantapproachtotheevaluationofnewlydeveloped methods to many difficult problems in robotics. Atlanta was also the location of a RoboCup@Space demonstration, which reflected the role of AI and robotics in space exploration. Prior to the symposium, space agencies had expressed an interest in cooperating with RoboCup. A first step in this direction was a successful demonstration at RoboCup 2007, which was accompanied with aninvitedtalkgivenbyaleadingscientistfromtheJapanAerospaceExploration Agency JAXA. [...]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many of our everyday tasks require the control of the serial order and the timing of component actions. Using the dynamic neural field (DNF) framework, we address the learning of representations that support the performance of precisely time action sequences. In continuation of previous modeling work and robotics implementations, we ask specifically the question how feedback about executed actions might be used by the learning system to fine tune a joint memory representation of the ordinal and the temporal structure which has been initially acquired by observation. The perceptual memory is represented by a self-stabilized, multi-bump activity pattern of neurons encoding instances of a sensory event (e.g., color, position or pitch) which guides sequence learning. The strength of the population representation of each event is a function of elapsed time since sequence onset. We propose and test in simulations a simple learning rule that detects a mismatch between the expected and realized timing of events and adapts the activation strengths in order to compensate for the movement time needed to achieve the desired effect. The simulation results show that the effector-specific memory representation can be robustly recalled. We discuss the impact of the fast, activation-based learning that the DNF framework provides for robotics applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is currently an increasing demand for robots able to acquire the sequential organization of tasks from social learning interactions with ordinary people. Interactive learning-by-demonstration and communication is a promising research topic in current robotics research. However, the efficient acquisition of generalized task representations that allow the robot to adapt to different users and contexts is a major challenge. In this paper, we present a dynamic neural field (DNF) model that is inspired by the hypothesis that the nervous system uses the off-line re-activation of initial memory traces to incrementally incorporate new information into structured knowledge. To achieve this, the model combines fast activation-based learning to robustly represent sequential information from single task demonstrations with slower, weight-based learning during internal simulations to establish longer-term associations between neural populations representing individual subtasks. The efficiency of the learning process is tested in an assembly paradigm in which the humanoid robot ARoS learns to construct a toy vehicle from its parts. User demonstrations with different serial orders together with the correction of initial prediction errors allow the robot to acquire generalized task knowledge about possible serial orders and the longer term dependencies between subgoals in very few social learning interactions. This success is shown in a joint action scenario in which ARoS uses the newly acquired assembly plan to construct the toy together with a human partner.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de mestrado em Engenharia Eletrónica Industrial e Computadores (área de especialização em Robótica)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia e Gestão de Sistemas de Informação