4 resultados para Road system
em Universidade do Minho
Resumo:
Given the current economic situation of the Portuguese municipalities, it is necessary to identify the priority investments in order to achieve a more efficient financial management. The classification of the road network of the municipality according to the occurrence of traffic accidents is fundamental to set priorities for road interventions. This paper presents a model for road network classification based on traffic accidents integrated in a geographic information system. Its practical application was developed through a case study in the municipality of Barcelos. An equation was defined to obtain a road safety index through the combination of the following indicators: severity, property damage only and accident costs. In addition to the road network classification, the application of the model allows to analyze the spatial coverage of accidents in order to determine the centrality and dispersion of the locations with the highest incidence of road accidents. This analysis can be further refined according to the nature of the accidents namely in collision, runoff and pedestrian crashes.
Resumo:
Earthworks involve the levelling or shaping of a target area through the moving or processing of the ground surface. Most construction projects require earthworks, which are heavily dependent on mechanical equipment (e.g., excavators, trucks and compactors). Often, earthworks are the most costly and time-consuming component of infrastructure constructions (e.g., road, railway and airports) and current pressure for higher productivity and safety highlights the need to optimize earthworks, which is a nontrivial task. Most previous attempts at tackling this problem focus on single-objective optimization of partial processes or aspects of earthworks, overlooking the advantages of a multi-objective and global optimization. This work describes a novel optimization system based on an evolutionary multi-objective approach, capable of globally optimizing several objectives simultaneously and dynamically. The proposed system views an earthwork construction as a production line, where the goal is to optimize resources under two crucial criteria (costs and duration) and focus the evolutionary search (non-dominated sorting genetic algorithm-II) on compaction allocation, using linear programming to distribute the remaining equipment (e.g., excavators). Several experiments were held using real-world data from a Portuguese construction site, showing that the proposed system is quite competitive when compared with current manual earthwork equipment allocation.
Resumo:
An empirical system was developed to obtain a quality index for rock slopes in road infrastructures, named Slope Quality Index (SQI), and it was applied to a set of real slopes.The SQI is supported in nine factors affecting slope stability that contemplate the evaluation of different parameters. Consequently, each factor is classified by the degree of importance and influence by assigned weights. These weights were established through a statistical analysis of replies to a survey that was distributed to several experienced professionals in the field. The proposed SQI varies between1 and 5, corresponding to slopes in very good and very bad condition state, respectively. Besides the advantage linked to a quantitative and qualitative evaluation of slopes, theSQI also allows identifying the most critical factors on the slope stability, which is a fundamental issue for an efficient management of the slope network in the road infrastructure, namely in the planning of conservation and maintenance operations.
Resumo:
Tese de Doutoramento em Engenharia Civil.