6 resultados para River sediments
em Universidade do Minho
Resumo:
This study investigated the efficiency of Moringa oleifera (MO) seeds as natural coagulant in coagulation/flocculation/dissolved air flotation (C/F/DAF), followed by nanofiltration (NF) for Microcystis protocystis and microcystin-LR removal. The methodology adopted in this work was performed in two steps: 1) coagulation/flocculation/dissolved air flotation (C/F/DAF) process using the MO extracted in saline solution of potassium chloride (KCl-1M) and sodium chloride (NaCl-1M) in optimum dosage 50 mg·L-1; 2) nanofiltration process using NF90 and NF270 membrane provided Dow Chemical Company®. A working pressure of 8 bar was applied. In all samples were analyzed color, turbidity, pH, cyanobacterial cells count and microcystin concentration. The use of MO seeds as natural coagulant, obtained satisfactory results in the M. protocystis, color and turbidity removal. NF was able to completely remove cyanobacterial cells and microcystins (100 %) from M. protocystis (always under the quantification limit). Therefore, C/F/DAF+NF sequence is a safe barrier against M. protocystis and microcystins in drinking water.
Influence of river ecological condition on changes in physico-chemical water parameters along rivers
Resumo:
Dissertação de mestrado em Ecology
Resumo:
Dissertação de mestrado integrado em Engenharia Civil
Resumo:
Dissertação de mestrado integrado em Engenharia Civil
Resumo:
Dissertação de mestrado em Ecology
Resumo:
The increase in heavy metal contamination in freshwater systems causes serious environmental problems in most industrialized countries, and the effort to find ecofriendly techniques for reducing water and sediment contamination is fundamental for environmental protection. Permeable barriers made of natural clays can be used as low-cost and eco-friendly materials for adsorbing heavy metals from water solution and thus reducing the sediment contamination. This study discusses the application of permeable barriers made of vermiculite clay for heavy metals remediation at the interface between water and sediments and investigates the possibility to increase their efficiency by loading the vermiculite surface with a microbial biofilm of Pseudomonas putida, which is well known to be a heavy metal accumulator. Some batch assays were performed to verify the uptake capacity of two systems and their adsorption kinetics, and the results indicated that the vermiculite bio-barrier system had a higher removal capacity than the vermiculite barrier (?34.4 and 22.8 % for Cu and Zn, respectively). Moreover, the presence of P. putida biofilm strongly contributed to fasten the kinetics of metals adsorption onto vermiculite sheets. In open-system conditions, the presence of a vermiculite barrier at the interface between water and sediment could reduce the sediment contamination up to 20 and 23 % for Cu and Zn, respectively, highlighting the efficiency of these eco-friendly materials for environmental applications. Nevertheless, the contribution of microbial biofilm in open-system setup should be optimized, and some important considerations about biofilm attachment in a continuous-flow system have been discussed.