4 resultados para River Forest

em Universidade do Minho


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação de mestrado em Ecology

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As a renewable energy source, the use of forest biomass for electricity generation is advantageous in comparison with fossil fuels, however the activity of forest biomass power plants causes adverse impacts, affecting particularly neighbouring communities. The main objective of this study is to estimate the effects of the activity of forest biomass power plants on the welfare of two groups of stakeholders, namely local residents and the general population and we apply two stated preference methods: contingent valuation and discrete choice experiments, respectively. The former method was applied to estimate the minimum compensation residents of neighbouring communities of two forest biomass power plants in Portugal would be willing to accept. The latter method was applied among the general population to estimate their willingness to pay to avoid specific environmental impacts. The results show that the presence of the selected facilities affects individuals’ well-being. On the other hand, in the discrete choice experiments conducted among the general population all impacts considered were significant determinants of respondents’ welfare levels. The results of this study stress the importance of performing an equity analysis of the welfare effects on different groups of stakeholders from the installation of forest biomass power plants, as their effects on welfare are location and impact specific. Policy makers should take into account the views of all stakeholders either directly or indirectly involved when deciding crucial issues regarding the sitting of new forest biomass power plants, in order to achieve an efficient and equitable outcome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the efficiency of Moringa oleifera (MO) seeds as natural coagulant in coagulation/flocculation/dissolved air flotation (C/F/DAF), followed by nanofiltration (NF) for Microcystis protocystis and microcystin-LR removal. The methodology adopted in this work was performed in two steps: 1) coagulation/flocculation/dissolved air flotation (C/F/DAF) process using the MO extracted in saline solution of potassium chloride (KCl-1M) and sodium chloride (NaCl-1M) in optimum dosage 50 mg·L-1; 2) nanofiltration process using NF90 and NF270 membrane provided Dow Chemical Company®. A working pressure of 8 bar was applied. In all samples were analyzed color, turbidity, pH, cyanobacterial cells count and microcystin concentration. The use of MO seeds as natural coagulant, obtained satisfactory results in the M. protocystis, color and turbidity removal. NF was able to completely remove cyanobacterial cells and microcystins (100 %) from M. protocystis (always under the quantification limit). Therefore, C/F/DAF+NF sequence is a safe barrier against M. protocystis and microcystins in drinking water.