2 resultados para Riemannian manifolds
em Universidade do Minho
Resumo:
For a given self-map f of M, a closed smooth connected and simply-connected manifold of dimension m ≥ 4, we provide an algorithm for estimating the values of the topological invariant Dm r [f], which equals the minimal number of r-periodic points in the smooth homotopy class of f. Our results are based on the combinatorial scheme for computing Dm r [f] introduced by G. Graff and J. Jezierski [J. Fixed Point Theory Appl. 13 (2013), 63–84]. An open-source implementation of the algorithm programmed in C++ is publicly available at http://www.pawelpilarczyk.com/combtop/.
Resumo:
For any vacuum initial data set, we define a local, non-negative scalar quantity which vanishes at every point of the data hypersurface if and only if the data are Kerr initial data. Our scalar quantity only depends on the quantities used to construct the vacuum initial data set which are the Riemannian metric defined on the initial data hypersurface and a symmetric tensor which plays the role of the second fundamental form of the embedded initial data hypersurface. The dependency is algorithmic in the sense that given the initial data one can compute the scalar quantity by algebraic and differential manipulations, being thus suitable for an implementation in a numerical code. The scalar could also be useful in studies of the non-linear stability of the Kerr solution because it serves to measure the deviation of a vacuum initial data set from the Kerr initial data in a local and algorithmic way.