3 resultados para Retail and distribution
em Universidade do Minho
Resumo:
The deep brine pools of the Red Sea comprise extreme, inhospitable habitats yet house microbial communities that potentially may fuel adjacent fauna. We here describe a novel bivalve from a deep-sea (1525 m) brine pool in the Red Sea, where conditions of high salinity, lowered pH, partial anoxia and high temperatures are prevalent. Remotely operated vehicle (ROV) footage showed that the bivalves were present in a narrow (20 cm) band along the rim of the brine pool, suggesting that it is not only tolerant of such extreme conditions but is also limited to them. The bivalve is a member of the Corbulidae and named Apachecorbula muriatica gen. et sp. nov. The shell is atypical of the family in being modioliform and thin. The semi-infaunal habit is seen in ROV images and reflected in the anatomy by the lack of siphons. The ctenidia are large and typical of a suspension feeding bivalve, but the absence of guard cilia and the greatly reduced labial palps suggest that it is non-selective as a response to low food availability. It is proposed that the low body mass observed is a consequence of the extreme habitat and low food availability. It is postulated that the observed morphology of Apachecorbula is a result of paedomorphosis driven by the effects of the extreme environment on growth but is in part mitigated by the absence of high predation pressures.
Resumo:
Noble metal powders containing gold and silver have been used for many centuries, providing different colours in the windows of the medieval cathedrals and in ancient Roman glasses. Nowadays, the interest in nanocomposite materials containing noble nanoparticles embedded in dielectric matrices is related with their potential use for a wide range of advanced technological applications. They have been proposed for environmental and biological sensing, tailoring colour of functional coatings, or for surface enhanced Raman spectroscopy. Most of these applications rely on the so-called localised surface plasmon resonance absorption, which is governed by the type of the noble metal nanoparticles, their distribution, size and shape and as well as of the dielectric characteristics of the host matrix. The aim of this work is to study the influence of the composition and thermal annealing on the morphological and structural changes of thin films composed of Ag metal clusters embedded in a dielectric TiO2 matrix. Since changes in size, shape and distribution of the clusters are fundamental parameters for tailoring the properties of plasmonic materials, a set of films with different Ag concentrations was prepared. The optical properties and the thermal behaviour of the films were correlated with the structural and morphological changes promoted by annealing. The films were deposited by DC magnetron sputtering and in order to promote the clustering of the Ag nanoparticles the as-deposited samples were subjected to an in-air annealing protocol. It was demonstrated that the clustering of metallic Ag affects the optical response spectrum and the thermal behaviour of the films.
Resumo:
Nanocomposite thin films consisting of a dielectric matrix, such as titanium oxide (TiO2), with embedded gold (Au) nanoparticles were prepared and will be analysed and discussed in detail in the present work. The evolution of morphological and structural features was studied for a wide range of Au concentrations and for annealing treatments in air, for temperatures ranging from 200 to 800 °C. Major findings revealed that for low Au atomic concentrations (at.%), there are only traces of clustering, and just for relatively high annealing temperatures, T ≥ 500 °C. Furthermore, the number of Au nanoparticles is extremely low, even for the highest annealing temperature, T = 800 °C. It is noteworthy that the TiO2 matrix also crystallizes in the anatase phase for annealing temperatures above 300 °C. For intermediate Au contents (5 at.% ≤ CAu ≤ 15 at.%), the formation of gold nanoclusters was much more evident, beginning at lower annealing temperatures (T ≥ 200 °C) with sizes ranging from 2 to 25 nm as the temperature increased. A change in the matrix crystallization from anatase to rutile was also observed in this intermediate range of compositions. For the highest Au concentrations (> 20 at.%), the films tended to form relatively larger clusters, with sizes above 20 nm (for T ≥ 400 °C). It is demonstrated that the structural and morphological characteristics of the films are strongly affected by the annealing temperature, as well as by the particular amounts, size and distribution of the Au nanoparticles dispersed in the TiO2 matrix.