5 resultados para Resonant Frequency.
em Universidade do Minho
Resumo:
The assessment of concrete mechanical properties during construction of concrete structures is of paramount importance for many intrinsic operations. However many of the available non-destructive methods for mechanical properties have limitations for use in construction sites. One of such methodologies is EMM-ARM, which is a variant of classic resonant frequency methods. This paper aims to demonstrate the efforts towards in-situ applicability of EMMARM, as to provide real-time information about concrete mechanical properties such as E-modulus and compressive strength. To achieve the aforementioned objective, a set of adaptations to the method have been successfully implemented and tested: (i) the reduction of the beam span; (ii) the use of a different mould material and (iii) a new support system for the beams. Based on these adaptations, a reusable mould was designed to enable easier systematic use of EMMARM. A pilot test was successfully performed under in-situ conditions during a bridge construction.
Resumo:
Discussing urban planning requires rethinking sustainability in cities and building healthy environments. Historically, some aspects of advancing the urban way of life have not been considered important in city planning. This is particularly the case where technological advances have led to conflicting land use, as with the installation of power poles and building electrical substations near residential areas. This research aims to discuss and rethink sustainability in cities, focusing on the environmental impact of low-frequency noise and electromagnetic radiation on human health. It presents data from a case study in an urban space in northern Portugal, and focuses on four guiding questions: Can power poles and power lines cause noise? Do power poles and power lines cause discomfort? Do power poles and power lines cause discomfort due to noise? Can power poles and power lines affect human health? To answer these questions, we undertook research between 2014 and 2015 that was comprised of two approaches. The first approach consisted of evaluating the noise of nine points divided into two groups â near the sourceâ (e.g., up to 50 m from power poles) and â away from the sourceâ (e.g., more than 250 m away from the source). In the second approach, noise levels were measured for 72 h in houses located up to 20 m from the source. The groups consist of residents living within the distance range specified for each group. The measurement values were compared with the proposed criteria for assessing low-frequency noise using the DEFRA Guidance (University of Salford). In the first approach, the noise caused discomfort, regardless of the group. In the second approach, the noise had fluctuating characteristics, which led us to conclude that the noise caused discomfort.
Resumo:
This paper reports on a search for narrow resonances in diboson production in the ℓℓqq¯ final state using pp collision data corresponding to an integrated luminosity of 20fb−1 collected at s√=8 TeV with the ATLAS detector at the Large Hadron Collider. No significant excess of data events over the Standard Model expectation is observed. Upper limits at the 95% confidence level are set on the production cross section times branching ratio for Kaluza--Klein gravitons predicted by the Randall--Sundrum model and for Extended Gauge Model W' bosons. These results lead to the exclusion of mass values below 740 GeV and 1590 GeV for the graviton and W' boson respectively.
Resumo:
Adatom-decorated graphene offers a promising new path towards spintronics in the ultrathin limit. We combine experiment and theory to investigate the electronic properties of dilutely fluorinated bilayer graphene, where the fluorine adatoms covalently bond to the top graphene layer. We show that fluorine adatoms give rise to resonant impurity states near the charge neutrality point of the bilayer, leading to strong scattering of charge carriers and hopping conduction inside a field-induced band gap. Remarkably, the application of an electric field across the layers is shown to tune the resonant scattering amplitude from fluorine adatoms by nearly twofold. The experimental observations are well explained by a theoretical analysis combining Boltzmann transport equations and fully quantum-mechanical methods. This paradigm can be generalized to many bilayer graphene-adatom materials, and we envision that the realization of electrically tunable resonance may be a key advantage in graphene-based spintronic devices.
Resumo:
Somatic mutations in the promoter region of telomerase reverse transcriptase (TERT) gene, mainly at positions c. − 124 and c. − 146 bp, are frequent in several human cancers; yet its presence in gastrointestinal stromal tumor (GIST) has not been reported to date. Herein, we searched for the presence and clinicopathological association of TERT promoter mutations in genomic DNA from 130 bona fide GISTs. We found TERT promoter mutations in 3.8% (5/130) of GISTs. The c. − 124C4T mutation was the most common event, present in 2.3% (3/130), and the c. − 146C4T mutation in 1.5% (2/130) of GISTs. No significant association was observed between TERT promoter mutation and patient’s clinicopathological features. The present study establishes the low frequency (4%) of TERT promoter mutations in GISTs. Further studies are required to confirm our findings and to elucidate the hypothetical biological and clinical impact of TERT promoter mutation in GIST pathogenesis.