16 resultados para Relaxation Processes
em Universidade do Minho
Resumo:
Tese de Doutoramento em Ciência e Engenharia de Polímeros e Compósitos.
Resumo:
In several industrial applications, highly complex behaviour materials are used together with intricate mixing processes, which difficult the achievement of the desired properties for the produced materials. This is the case of the well-known dispersion of nano-sized fillers in a melt polymer matrix, used to improve the nanocomposite mechanical and/or electrical properties. This mixing is usually performed in twin-screw extruders, that promote complex flow patterns, and, since an in loco analysis of the material evolution and mixing is difficult to perform, numerical tools can be very useful to predict the evolution and behaviour of the material. This work presents a numerical based study to improve the understanding of mixing processes. Initial numerical studies were performed with generalized Newtonian fluids, but, due to the null relaxation time that characterize this type of fluids, the assumption of viscoelastic behavior was required. Therefore, the polymer melt was rheologically characterized, and, a six mode Phan-Thien-Tanner and Giesekus models were used to fit the rheological data. These viscoelastic rheological models were used to model the process. The conclusions obtained in this work provide additional and useful data to correlate the type and intensity of the deformation history promoted to the polymer nanocomposite and the quality of the mixing obtained.
Resumo:
In this work the dielectric properties and ferromagnetic resonance of Polyvinylidene- uoride embedded with 10 wt. % of NiFe2O4 or Ni0.5Zn0.5Fe2O4 nanoparticles are presented. The mechanisms of the dielectric relaxation in these two composites do not differ from each other. For more precise characterization of the dielectric relaxation, a two dimensional distribution of relaxation times was calculated from the temperature dependencies of the complex dielectric permittivity. The results obtained from the 2D distribution and the mean relaxation time are found to be consistent. The dynamics of the dielectric permittivity is described by the Arrhenius law. The energy and attempt time of the dielectric relaxators lie in a narrow energy and time region thus proving that the single type chains of polymer are responsible for a dispersion. The magnetic properties of the composites were investigated using the fer- romagnetic resonance. A single resonance line was observed for both samples. From the temperature dependence (100 K - 310 K) of the resonance eld and linewidth, the origin of the observed line was attributed to the NiFe2O4 and Ni0.5Zn0.5Fe2O4 superparamagnetic nanoparticles. By measuring lms at dif- ferent orientations with respect to the external magnetic eld, the angular dependence of the resonance was observed, indicating the magnetic dipolar in-plane interactions.
Resumo:
Polyimide co-polymers have been prepared based on different diamines as co-monomers: a diamine without CN groups and a novel synthesized diamine with two CN groups prepared by polycondensation reaction followed by thermal cyclodehydration. Dielectric spectroscopy measurements were performed and the dielectric complex function, ac conductivity and electric modulus of the co-polymers were investigated as a function of CN group content in the frequency range from 0.1 Hz to 107 Hz at temperatures from 25 to 260 °C. For all samples and temperatures above 150ºC, the dielectric constant increases with increasing temperature due to increaseing conductivity. The α-relaxation is just detected for the sample without CN groups, being this relaxation overlapped by the electrical conductivity contributions in the remaining samples. For the copolymer samples and the polymer with CN groups an important Maxwell-Wagner-Sillars contribution is detected. The mechanisms responsible for the dielectric relaxation, conduction process and electric modulus response have been discussed as a function of the CN groups content present in the samples.
Resumo:
This paper assesses land-use changes related to naturbanization processes on three biosphere reserves in Southern Europe. A comparative analysis has been done on the National Parks in Peneda-Ger^es in North Portugal, C_evennes in South France and Sierra Nevada in South Spain, using Corine Land Cover data from 1990 until 2006. Results indicate that the process of land-use intensification is taking place in the frame of naturbanization dynamics that could jeopardize the role of Protected Areas. Focusing on the trends faced by National Parks and their surrounding territories, the analysis demonstrates, both in quantitative and spatial terms, the intensification processes of land-use changes and how it is important to know them for coping with increasing threats. The article concludes that in the current context of increasing stresses, a broader focus on nature protection, encompassing the wider countryside, is needed if the initiatives for biodiversity protection are to be effective.
Resumo:
A one-step melt-mixing method is proposed to study dispersion and re-agglomeration phenomena of the as-received and functionalized graphite nanoplates in polypropylene melts. Graphite nanoplates were chemically modified via 1,3-dipolar cycloaddition of an azomethine ylide and then grafted with polypropylene-graft-maleic anhydride. The effect of surface functionalization on the dispersion kinetics, nanoparticle re-agglomeration and interface bonding with the polymer is investigated. Nanocomposites with 2 or 10 wt% of as-received and functionalized graphite nanoplates were prepared in a small-scale prototype mixer coupled to a capillary rheometer. Samples were collected along the flow axis and characterized by optical microscopy, scanning electron microscopy and electrical conductivity measurements. The as-received graphite nanoplates tend to re-agglomerate upon stress relaxation of the polymer melt. The covalent attachment of a polymer to the nanoparticle surface enhances the stability of dispersion, delaying the re-agglomeration. Surface modification also improves interfacial interactions and the resulting composites presented improved electrical conductivity.
Resumo:
The kinetics of GnP dispersion in polypropylene melt was studied using a prototype small scale modular extensional mixer. Its modular nature enabled the sequential application of a mixing step, melt relaxation, and a second mixing step. The latter could reproduce the flow conditions on the first mixing step, or generate milder flow conditions. The effect of these sequences of flow constraints upon GnP dispersion along the mixer length was studied for composites with 2 and 10 wt.% GnP. The samples collected along the first mixing zone showed a gradual decrease of number and size of GnP agglomerates, at a rate that was independent of the flow conditions imposed to the melt, but dependent on composition. The relaxation zone induced GnP re-agglomeration, and the application of a second mixing step caused variable dispersion results that were largely dependent on the hydrodynamic stresses generated.
Resumo:
Modeling Extract-Transform-Load (ETL) processes of a Data Warehousing System has always been a challenge. The heterogeneity of the sources, the quality of the data obtained and the conciliation process are some of the issues that must be addressed in the design phase of this critical component. Commercial ETL tools often provide proprietary diagrammatic components and modeling languages that are not standard, thus not providing the ideal separation between a modeling platform and an execution platform. This separation in conjunction with the use of standard notations and languages is critical in a system that tends to evolve through time and which cannot be undermined by a normally expensive tool that becomes an unsatisfactory component. In this paper we demonstrate the application of Relational Algebra as a modeling language of an ETL system as an effort to standardize operations and provide a basis for uncommon ETL execution platforms.
Resumo:
Printed electronics represent an alternative solution for the manufacturing of low-temperature and large area flexible electronics. The use of inkjet printing is showing major advantages when compared to other established printing technologies such as, gravure, screen or offset printing, allowing the reduction of manufacturing costs due to its efficient material usage and the direct-writing approach without requirement of any masks. However, several technological restrictions for printed electronics can hinder its application potential, e.g. the device stability under atmospheric or even more stringent conditions. Here, we study the influence of specific mechanical, chemical, and temperature treatments usually appearing in manufacturing processes for textiles on the electrical performance of all-inkjet-printed organic thin-film transistors (OTFTs). Therefore, OTFTs where manufactured with silver electrodes, a UV curable dielectric, and 6,13-bis(triisopropylsilylethynyl) pentance (TIPS-pentacene) as the active semiconductor layer. All the layers were deposited using inkjet printing. After electrical characterization of the printed OTFTs, a simple encapsulation method was applied followed by the degradation study allowing a comparison of the electrical performance of treated and not treated OTFTs. Industrial calendering, dyeing, washing and stentering were selected as typical textile processes and treatment methods for the printed OTFTs. It is shown that the all-inkjet-printed OTFTs fabricated in this work are functional after their submission to the textiles processes but with degradation in the electrical performance, exhibiting higher degradation in the OTFTs with shorter channel lengths (L=10 μm).
Resumo:
This study investigated the efficiency of Moringa oleifera (MO) seeds as natural coagulant in coagulation/flocculation/dissolved air flotation (C/F/DAF), followed by nanofiltration (NF) for Microcystis protocystis and microcystin-LR removal. The methodology adopted in this work was performed in two steps: 1) coagulation/flocculation/dissolved air flotation (C/F/DAF) process using the MO extracted in saline solution of potassium chloride (KCl-1M) and sodium chloride (NaCl-1M) in optimum dosage 50 mg·L-1; 2) nanofiltration process using NF90 and NF270 membrane provided Dow Chemical Company®. A working pressure of 8 bar was applied. In all samples were analyzed color, turbidity, pH, cyanobacterial cells count and microcystin concentration. The use of MO seeds as natural coagulant, obtained satisfactory results in the M. protocystis, color and turbidity removal. NF was able to completely remove cyanobacterial cells and microcystins (100 %) from M. protocystis (always under the quantification limit). Therefore, C/F/DAF+NF sequence is a safe barrier against M. protocystis and microcystins in drinking water.
Resumo:
Aims: The present study focuses on the analysis of novelty emergence in classic Gloria Films with Rogers, Perls, and Ellis to understand how the same client formulated her own problem and if and how change occurred in those three sessions. Method: The Innovative Moments Coding System was applied to track innovative moments (IMs) and their themes. Results: The session with Rogers showed more diversity in disclosed problems and themes of IMs, as well as a higher proportion of reflection IMs. The session with Perls demonstrated a high proportion of protest IMs. The session with Ellis showed less innovation than other sessions. The changes found were based mostly on reflection and protest IMs in three sessions. Conclusion: Narrative innovations occurred in the three single sessions. The type of dominant innovation is consistent with the therapeutic model and the IMs model. The exploration of the IMs’ themes allowed a more precise identification of Gloria's new narrative positions and their development throughout those sessions.
Resumo:
CONSPECTUS: Two-dimensional (2D) crystals derived from transition metal dichalcogenides (TMDs) are intriguing materials that offer a unique platform to study fundamental physical phenomena as well as to explore development of novel devices. Semiconducting group 6 TMDs such as MoS2 and WSe2 are known for their large optical absorption coefficient and their potential for high efficiency photovoltaics and photodetectors. Monolayer sheets of these compounds are flexible, stretchable, and soft semiconductors with a direct band gap in contrast to their well-known bulk crystals that are rigid and hard indirect gap semiconductors. Recent intense research has been motivated by the distinct electrical, optical, and mechanical properties of these TMD crystals in the ultimate thickness regime. As a semiconductor with a band gap in the visible to near-IR frequencies, these 2D MX2 materials (M = Mo, W; X = S, Se) exhibit distinct excitonic absorption and emission features. In this Account, we discuss how optical spectroscopy of these materials allows investigation of their electronic properties and the relaxation dynamics of excitons. We first discuss the basic electronic structure of 2D TMDs highlighting the key features of the dispersion relation. With the help of theoretical calculations, we further discuss how photoluminescence energy of direct and indirect excitons provide a guide to understanding the evolution of the electronic structure as a function of the number of layers. We also highlight the behavior of the two competing conduction valleys and their role in the optical processes. Intercalation of group 6 TMDs by alkali metals results in the structural phase transformation with corresponding semiconductor-to-metal transition. Monolayer TMDs obtained by intercalation-assisted exfoliation retains the metastable metallic phase. Mild annealing, however, destabilizes the metastable phase and gradually restores the original semiconducting phase. Interestingly, the semiconducting 2H phase, metallic 1T phase, and a charge-density-wave-like 1T' phase can coexist within a single crystalline monolayer sheet. We further discuss the electronic properties of the restacked films of chemically exfoliated MoS2. Finally, we focus on the strong optical absorption and related exciton relaxation in monolayer and bilayer MX2. Monolayer MX2 absorbs as much as 30% of incident photons in the blue region of the visible light despite being atomically thin. This giant absorption is attributed to nesting of the conduction and valence bands, which leads to diversion of optical conductivity. We describe how the relaxation pathway of excitons depends strongly on the excitation energy. Excitation at the band nesting region is of unique significance because it leads to relaxation of electrons and holes with opposite momentum and spontaneous formation of indirect excitons.
Resumo:
This paper describes the concept, technical realisation and validation of a largely data-driven method to model events with Z→ττ decays. In Z→μμ events selected from proton-proton collision data recorded at s√=8 TeV with the ATLAS experiment at the LHC in 2012, the Z decay muons are replaced by τ leptons from simulated Z→ττ decays at the level of reconstructed tracks and calorimeter cells. The τ lepton kinematics are derived from the kinematics of the original muons. Thus, only the well-understood decays of the Z boson and τ leptons as well as the detector response to the τ decay products are obtained from simulation. All other aspects of the event, such as the Z boson and jet kinematics as well as effects from multiple interactions, are given by the actual data. This so-called τ-embedding method is particularly relevant for Higgs boson searches and analyses in ττ final states, where Z→ττ decays constitute a large irreducible background that cannot be obtained directly from data control samples.
Resumo:
The pathological study of the placenta is of upmost importance in cases of unexplained fetal/perinatal loss and often these carry litigation implications. Integrating pathological findings and the underlying pathophysiological processes, leading to placental lesions, is fundamental for the evaluation of poor fetal and perinatal outcomes and to distinguish from cases of true negligence.
Resumo:
Chitosan coating was applied in Lactoferrin (Lf)-Glycomacropeptide (GMP) nanohydrogels by layer-by-layer coating process. A volume ratio of 0.1 of Lf-GMP nanohydrogels (0.2 mg.mL-1, at pH 5.0) to chitosan (1 mg.mL-1, at pH 3) demonstrated to be the optimal condition to obtain stable nanohydrogels with size of 230 ± 12 nm, a PdI of 0.22 ± 0.02 and a -potential of 30.0 ± 0.15 mV. Transmission electron microscopy (TEM) images showed that the application of chitosan coating in Lf-GMP did not affect the spherical shape of nanohydrogels and confirmed the low aggregation of nanohydrogels in solution. The analysis of chemical interactions between chitosan and Lf-GMP nanohydrogels were performed by Fourier transform infrared spectroscopy (FTIR) and by circular dichroism (CD) that revealed that a specific chemical interaction occurring between functional groups of protein-based nanohydrogels and active groups of the chitosan was established. The effect of chitosan coating on release mechanisms of Lf-GMP nanohydrogels at acid conditions (pH 2, 37 ºC) was evaluated by the encapsulation of a model compound (caffeine) in these systems. Linear Superposition Model was used to fit the experimental data and revealed that Fick and relaxation mechanisms are involved in caffeine release. It was also observed that the Fick contribution increase with the application of chitosan coating. In vitro gastric digestion was performed with Lf-GMP nanohydrogels and Lf-GMP nanohydrogels with chitosan coating and it was observed that the presence of chitosan improve the stability of Lf and GMP (proteins were hydrolysed at a slower rate and were present in solution by longer time). Native electrophoreses revealed that the nanohydrogels without coating remained intact in solution until 15 min and with chitosan coating remained intact until 60 min, during gastric digestion.