6 resultados para Reactive elements
em Universidade do Minho
Resumo:
The assessment of existing timber structures is often limited to information obtained from non or semi destructive testing, as mechanical testing is in many cases not possible due to its destructive nature. Therefore, the available data provides only an indirect measurement of the reference mechanical properties of timber elements, often obtained through empirical based correlations. Moreover, the data must result from the combination of different tests, as to provide a reliable source of information for a structural analysis. Even if general guidelines are available for each typology of testing, there is still a need for a global methodology allowing to combine information from different sources and infer upon that information in a decision process. In this scope, the present work presents the implementation of a probabilistic based framework for safety assessment of existing timber elements. This methodology combines information gathered in different scales and follows a probabilistic framework allowing for the structural assessment of existing timber elements with possibility of inference and updating of its mechanical properties, through Bayesian methods. The probabilistic based framework is based in four main steps: (i) scale of information; (ii) measurement data; (iii) probability assignment; and (iv) structural analysis. In this work, the proposed methodology is implemented in a case study. Data was obtained through a multi-scale experimental campaign made to old chestnut timber beams accounting correlations of non and semi-destructive tests with mechanical properties. Finally, different inference scenarios are discussed aiming at the characterization of the safety level of the elements.
Resumo:
A new technique was developed for producing thin panels of a cement based material reinforced with relatively high content of steel fibres originated from the industry of tyre recycling. Flexural tests with notched and un-notched specimens were carried out to characterize the mechanical properties of this Fibre Reinforced Cement Composite (FRCC) and the results are presented and discussed. The values of the fracture mode I parameters of the developed FRCC were determined by performing inverse analysis with test results obtained in three point notched beam bending tests. To appraise the potentialities of these FRCC panels for the increase of the shear capacity of reinforced (RC) beams, numerical research was performed on the use of developed FRCC panel for shear reinforcement by applying the panels in the lateral faces of RC beams deficiently reinforced in shear.
Resumo:
Nowadays, there is an increasing interest in using fiber reinforced polymers (FRP) for strengthening masonry elements. It has been observed that these materials, when used for externally bonded reinforcement (EBR), improve the performance of masonry components. However, issues such as durability and long-term performance of strengthened elements are still open. The bond between composite material and masonry substrate is a critical mechanism in EBR strengthening techniques, and therefore its durability and long-term performance should be deeply investigated and characterized. In the present study, the influence of water immersion on the bond performance is investigated by performing single-lap shear bond tests on two sets of GFRP-strengthened specimens immersed in water for six months. Different surface preparation techniques are used for each set of specimens to study their effect on the bond degradation. The specimens are prepared following the wet lay-up procedure. The observations and the obtained results are presented and discussed.
Resumo:
Tantalum oxynitride thin films were produced by magnetron sputtering. The films were deposited usinga pure Ta target and a working atmosphere with a constant N2/O2ratio. The choice of this constant ratiolimits the study concerning the influence of each reactive gas, but allows a deeper understanding of theaspects related to the affinity of Ta to the non-metallic elements and it is economically advantageous.This work begins by analysing the data obtained directly from the film deposition stage, followed bythe analysis of the morphology, composition and structure. For a better understanding regarding theinfluence of the deposition parameters, the analyses are presented by using the following criterion: thefilms were divided into two sets, one of them produced with grounded substrate holder and the otherwith a polarization of −50 V. Each one of these sets was produced with different partial pressure of thereactive gases P(N2+ O2). All the films exhibited a O/N ratio higher than the N/O ratio in the depositionchamber atmosphere. In the case of the films produced with grounded substrate holder, a strong increaseof the O content is observed, associated to the strong decrease of the N content, when P(N2+ O2) is higherthan 0.13 Pa. The higher Ta affinity for O strongly influences the structural evolution of the films. Grazingincidence X-ray diffraction showed that the lower partial pressure films were crystalline, while X-rayreflectivity studies found out that the density of the films depended on the deposition conditions: thehigher the gas pressure, the lower the density. Firstly, a dominant -Ta structure is observed, for lowP(N2+ O2); secondly a fcc-Ta(N,O) structure, for intermediate P(N2+ O2); thirdly, the films are amorphousfor the highest partial pressures. The comparison of the characteristics of both sets of produced TaNxOyfilms are explained, with detail, in the text.
Resumo:
"Series title: Springerbriefs in applied sciences and technology, ISSN 2191-530X"
Resumo:
Versão dos autores para esta publicação.