8 resultados para Random-variables
em Universidade do Minho
Resumo:
This paper presents a methodology based on the Bayesian data fusion techniques applied to non-destructive and destructive tests for the structural assessment of historical constructions. The aim of the methodology is to reduce the uncertainties of the parameter estimation. The Young's modulus of granite stones was chosen as an example for the present paper. The methodology considers several levels of uncertainty since the parameters of interest are considered random variables with random moments. A new concept of Trust Factor was introduced to affect the uncertainty related to each test results, translated by their standard deviation, depending on the higher or lower reliability of each test to predict a certain parameter.
Resumo:
This paper aims at developing a collision prediction model for three-leg junctions located in national roads (NR) in Northern Portugal. The focus is to identify factors that contribute for collision type crashes in those locations, mainly factors related to road geometric consistency, since literature is scarce on those, and to research the impact of three modeling methods: generalized estimating equations, random-effects negative binomial models and random-parameters negative binomial models, on the factors of those models. The database used included data published between 2008 and 2010 of 177 three-leg junctions. It was split in three groups of contributing factors which were tested sequentially for each of the adopted models: at first only traffic, then, traffic and the geometric characteristics of the junctions within their area of influence; and, lastly, factors which show the difference between the geometric characteristics of the segments boarding the junctionsâ area of influence and the segment included in that area were added. The choice of the best modeling technique was supported by the result of a cross validation made to ascertain the best model for the three sets of researched contributing factors. The models fitted with random-parameters negative binomial models had the best performance in the process. In the best models obtained for every modeling technique, the characteristics of the road environment, including proxy measures for the geometric consistency, along with traffic volume, contribute significantly to the number of collisions. Both the variables concerning junctions and the various national highway segments in their area of influence, as well as variations from those characteristics concerning roadway segments which border the already mentioned area of influence have proven their relevance and, therefore, there is a rightful need to incorporate the effect of geometric consistency in the three-leg junctions safety studies.
Resumo:
Hospitals are nowadays collecting vast amounts of data related with patient records. All this data hold valuable knowledge that can be used to improve hospital decision making. Data mining techniques aim precisely at the extraction of useful knowledge from raw data. This work describes an implementation of a medical data mining project approach based on the CRISP-DM methodology. Recent real-world data, from 2000 to 2013, were collected from a Portuguese hospital and related with inpatient hospitalization. The goal was to predict generic hospital Length Of Stay based on indicators that are commonly available at the hospitalization process (e.g., gender, age, episode type, medical specialty). At the data preparation stage, the data were cleaned and variables were selected and transformed, leading to 14 inputs. Next, at the modeling stage, a regression approach was adopted, where six learning methods were compared: Average Prediction, Multiple Regression, Decision Tree, Artificial Neural Network ensemble, Support Vector Machine and Random Forest. The best learning model was obtained by the Random Forest method, which presents a high quality coefficient of determination value (0.81). This model was then opened by using a sensitivity analysis procedure that revealed three influential input attributes: the hospital episode type, the physical service where the patient is hospitalized and the associated medical specialty. Such extracted knowledge confirmed that the obtained predictive model is credible and with potential value for supporting decisions of hospital managers.
Resumo:
Glazing is a technique used to retard fish deterioration during storage. This work focuses on the study of distinct variables (fish temperature, coating temperature, dipping time) that affect the thickness of edible coatings (water glazing and 1.5% chitosan) applied on frozen fish. Samples of frozen Atlantic salmon (Salmo salar) at -15, -20, and -25 °C were either glazed with water at 0.5, 1.5 or 2.5 °C or coated with 1.5% chitosan solution at 2.5, 5 or 8 °C, by dipping during 10 to 60 s. For both water and chitosan coatings, lowering the salmon and coating solution temperatures resulted in an increase of coating thickness. At the same conditions, higher thickness values were obtained when using chitosan (max. thickness of 1.41±0.05 mm) compared to water (max. thickness of 0.84±0.03 mm). Freezing temperature and crystallization heat were found to be lower for 1.5% chitosan solution than for water, thus favoring phase change. Salmon temperature profiles allowed determining, for different dipping conditions, whether the salmon temperature was within food safety standards to prevent the growth of pathogenic microorganisms. The concept of safe dipping time is proposed to define how long a frozen product can be dipped into a solution without the temperature raising to a point where it can constitute a hazard.
Resumo:
Lecture Notes in Computer Science, 9273
Resumo:
Tese de Doutoramento em Ciências (Especialidade em Matemática)
Resumo:
First published online: December 16, 2014.
Resumo:
There are two significant reasons for the uncertainties of water demand. On one hand, an evolving technological world is plagued with accelerated change in lifestyles and consumption patterns; and on the other hand, intensifying climate change. Therefore, with an uncertain future, what enables policymakers to define the state of water resources, which are affected by withdrawals and demands? Through a case study based on thirteen years of observation data in the Zayandeh Rud River basin in Isfahan province located in Iran, this paper forecasts a wide range of urban water demand possibilities in order to create a portfolio of plans which could be utilized by different water managers. A comparison and contrast of two existing methods are discussed, demonstrating the Random Walk Methodology, which will be referred to as the â On uncertainty pathâ , because it takes the uncertainties into account and can be recommended to managers. This On Uncertainty Path is composed of both dynamic forecasting method and system simulation. The outcomes show the advantage of such methods particularly for places that climate change will aggravate their water scarcity, such as Iran.