79 resultados para RELATIONAL DATA

em Universidade do Minho


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modeling Extract-Transform-Load (ETL) processes of a Data Warehousing System has always been a challenge. The heterogeneity of the sources, the quality of the data obtained and the conciliation process are some of the issues that must be addressed in the design phase of this critical component. Commercial ETL tools often provide proprietary diagrammatic components and modeling languages that are not standard, thus not providing the ideal separation between a modeling platform and an execution platform. This separation in conjunction with the use of standard notations and languages is critical in a system that tends to evolve through time and which cannot be undermined by a normally expensive tool that becomes an unsatisfactory component. In this paper we demonstrate the application of Relational Algebra as a modeling language of an ETL system as an effort to standardize operations and provide a basis for uncommon ETL execution platforms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The MAP-i Doctoral Programme in Informatics, of the Universities of Minho, Aveiro and Porto

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tese de Doutoramento em Psicologia Básica

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As huge amounts of data become available in organizations and society, specific data analytics skills and techniques are needed to explore this data and extract from it useful patterns, tendencies, models or other useful knowledge, which could be used to support the decision-making process, to define new strategies or to understand what is happening in a specific field. Only with a deep understanding of a phenomenon it is possible to fight it. In this paper, a data-driven analytics approach is used for the analysis of the increasing incidence of fatalities by pneumonia in the Portuguese population, characterizing the disease and its incidence in terms of fatalities, knowledge that can be used to define appropriate strategies that can aim to reduce this phenomenon, which has increased more than 65% in a decade.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a methodology based on the Bayesian data fusion techniques applied to non-destructive and destructive tests for the structural assessment of historical constructions. The aim of the methodology is to reduce the uncertainties of the parameter estimation. The Young's modulus of granite stones was chosen as an example for the present paper. The methodology considers several levels of uncertainty since the parameters of interest are considered random variables with random moments. A new concept of Trust Factor was introduced to affect the uncertainty related to each test results, translated by their standard deviation, depending on the higher or lower reliability of each test to predict a certain parameter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hospitals are nowadays collecting vast amounts of data related with patient records. All this data hold valuable knowledge that can be used to improve hospital decision making. Data mining techniques aim precisely at the extraction of useful knowledge from raw data. This work describes an implementation of a medical data mining project approach based on the CRISP-DM methodology. Recent real-world data, from 2000 to 2013, were collected from a Portuguese hospital and related with inpatient hospitalization. The goal was to predict generic hospital Length Of Stay based on indicators that are commonly available at the hospitalization process (e.g., gender, age, episode type, medical specialty). At the data preparation stage, the data were cleaned and variables were selected and transformed, leading to 14 inputs. Next, at the modeling stage, a regression approach was adopted, where six learning methods were compared: Average Prediction, Multiple Regression, Decision Tree, Artificial Neural Network ensemble, Support Vector Machine and Random Forest. The best learning model was obtained by the Random Forest method, which presents a high quality coefficient of determination value (0.81). This model was then opened by using a sensitivity analysis procedure that revealed three influential input attributes: the hospital episode type, the physical service where the patient is hospitalized and the associated medical specialty. Such extracted knowledge confirmed that the obtained predictive model is credible and with potential value for supporting decisions of hospital managers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Earthworks tasks aim at levelling the ground surface at a target construction area and precede any kind of structural construction (e.g., road and railway construction). It is comprised of sequential tasks, such as excavation, transportation, spreading and compaction, and it is strongly based on heavy mechanical equipment and repetitive processes. Under this context, it is essential to optimize the usage of all available resources under two key criteria: the costs and duration of earthwork projects. In this paper, we present an integrated system that uses two artificial intelligence based techniques: data mining and evolutionary multi-objective optimization. The former is used to build data-driven models capable of providing realistic estimates of resource productivity, while the latter is used to optimize resource allocation considering the two main earthwork objectives (duration and cost). Experiments held using real-world data, from a construction site, have shown that the proposed system is competitive when compared with current manual earthwork design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The MAP-i doctoral program of the Universities of Minho, Aveiro and Porto

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We are living in the era of Big Data. A time which is characterized by the continuous creation of vast amounts of data, originated from different sources, and with different formats. First, with the rise of the social networks and, more recently, with the advent of the Internet of Things (IoT), in which everyone and (eventually) everything is linked to the Internet, data with enormous potential for organizations is being continuously generated. In order to be more competitive, organizations want to access and explore all the richness that is present in those data. Indeed, Big Data is only as valuable as the insights organizations gather from it to make better decisions, which is the main goal of Business Intelligence. In this paper we describe an experiment in which data obtained from a NoSQL data source (database technology explicitly developed to deal with the specificities of Big Data) is used to feed a Business Intelligence solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de Mestrado em Engenharia Informática

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies in Computational Intelligence, 616

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nowadays, the vulgarization of information and communication technologies has reached to a level that the majority of people spend a lot of time using software to do regular tasks, ranging from games and ordinary time and weather utilities to some more sophisticated ones, like retail or banking applications. This new way of life is supported by the Internet or by specific applications that changed the image people had about using information and communication technologies. All over the world, the first cycle of studies of educational systems also has been addressed with the justification that this encourages the development of children. Taking this into consideration, we design and develop a visual explorer system for relational databases that can be used by everyone, from “7 to 77”, in an intuitive and easy way, getting immediate results – a new database querying experience. Thus, in this paper we will expose the main characteristics and features of this visual database explorer, showing how it works and how it can be used to execute the most current data manipulation operations over a database.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the last few years many research efforts have been done to improve the design of ETL (Extract-Transform-Load) systems. ETL systems are considered very time-consuming, error-prone and complex involving several participants from different knowledge domains. ETL processes are one of the most important components of a data warehousing system that are strongly influenced by the complexity of business requirements, their changing and evolution. These aspects influence not only the structure of a data warehouse but also the structures of the data sources involved with. To minimize the negative impact of such variables, we propose the use of ETL patterns to build specific ETL packages. In this paper, we formalize this approach using BPMN (Business Process Modelling Language) for modelling more conceptual ETL workflows, mapping them to real execution primitives through the use of a domain-specific language that allows for the generation of specific instances that can be executed in an ETL commercial tool.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Os recursos computacionais exigidos durante o processamento de grandes volumes de dados durante um processo de povoamento de um data warehouse faz com que a necessidade da procura de novas implementações tenha também em atenção a eficiência energética dos diversos componentes processuais que integram um qualquer sistema de povoamento. A lacuna de técnicas ou metodologias para categorizar e avaliar o consumo de energia em sistemas de povoamento de data warehouses é claramente notória. O acesso a esse tipo de informação possibilitaria a construção de sistemas de povoamento de data warehouses com níveis de consumo de energia mais baixos e, portanto, mais eficientes. Partindo da adaptação de técnicas aplicadas a sistemas de gestão de base de dados para a obtenção dos consumos energéticos da execução de interrogações, desenhámos e implementámos uma nova técnica que nos permite obter os consumos de energia para um qualquer processo de povoamento de um data warehouse, através da avaliação do consumo de cada um dos componentes utilizados na sua implementação utilizando uma ferramenta convencional. Neste artigo apresentamos a forma como fazemos tal avaliação, utilizando na demonstração da viabilidade da nossa proposta um processo de povoamento bastante típico em data warehouses – substituição encadeada de chaves operacionais -, que foi implementado através da ferramenta Kettle.