3 resultados para Quantified Reflective Logic
em Universidade do Minho
Resumo:
Introduction of technologies in the workplace have led to a dramatic change. These changes have come with an increased capacity to gather data about one’s working performance (i.e. productivity), as well as the capacity to track one’s personal responses (i.e. emotional, physiological, etc.) to this changing workplace environment. This movement of self-monitoring or self-sensing using diverse types of wearable sensors combined with the use of computing has been identified as the Quantified-Self. Miniaturization of sensors, reduction in cost and a non-stop increase in the computer power capacity has led to a panacea of wearables and sensors to track and analyze all types of information. Utilized in the personal sphere to track information, a looming question remains, should employers use the information from the Quantified-Self to track their employees’ performance or well-being in the workplace and will this benefit employees? The aim of the present work is to layout the implications and challenges associated with the use of Quantified-Self information in the workplace. The Quantified-Self movement has enabled people to understand their personal life better by tracking multiple information and signals; such an approach could allow companies to gather knowledge on what drives productivity for their business and/or well-being of their employees. A discussion about the implications of this approach will cover 1) Monitoring health and well-being, 2) Oversight and safety, and 3) Mentoring and training. Challenges will address the question of 1) Privacy and Acceptability, 2) Scalability and 3) Creativity. Even though many questions remain regarding their use in the workplace, wearable technologies and Quantified-Self data in the workplace represent an exciting opportunity for the industry and health and safety practitioners who will be using them.
Resumo:
About 90% of breast cancers do not cause or are capable of producing death if detected at an early stage and treated properly. Indeed, it is still not known a specific cause for the illness. It may be not only a beginning, but also a set of associations that will determine the onset of the disease. Undeniably, there are some factors that seem to be associated with the boosted risk of the malady. Pondering the present study, different breast cancer risk assessment models where considered. It is our intention to develop a hybrid decision support system under a formal framework based on Logic Programming for knowledge representation and reasoning, complemented with an approach to computing centered on Artificial Neural Networks, to evaluate the risk of developing breast cancer and the respective Degree-of-Confidence that one has on such a happening.
Resumo:
In: A. Cunha, E. Kindler (eds.): Proceedings of the Fourth International Workshop on Bidirectional Transformations (Bx 2015), L’Aquila, Italy, July 24, 2015, published at http://ceur-ws.org