2 resultados para Quadratic distance estimator
em Universidade do Minho
Resumo:
Immersive environments (IE) are being increasingly used in order to perform psychophysical experiments. The versatility in terms of stimuli presentation and control and the less time-consuming procedures are their greatest strengths. However, to ensure that IE results can be generalized to real world scenarios we must first provide evidence that performance in IE is quantitatively indistinguishable from performance in real-world. Our goal was to perceptually validate distance perception for CAVE-like IEs. Participants performed a Frontal Matching Distance Task (Durgin & Li, 2011) in three different conditions: real-world scenario (RWS); photorealistic IE (IEPH) and non-photorealistic IE (IENPH). Underestimation of distance was found across all the conditions, with a significant difference between the three conditions (Wilks’ Lambda = .38, F(2,134)= 110.8, p<.01, significant pairwise differences with p<.01). We found a mean error of 2.3 meters for the RWS, 5 meters for the IEPH, and of 6 meters for the IENPH in a pooled data set of 5 participants. Results indicate that while having a photorealistic IE with perspective and stereoscopic depth cues might not be enough to elicit a real-world performance in distance judgment tasks, nevertheless this type of environment minimizes the discrepancy between simulation and real-world when compared with non-photorealistic IEs.
Resumo:
Extreme value theory (EVT) deals with the occurrence of extreme phenomena. The tail index is a very important parameter appearing in the estimation of the probability of rare events. Under a semiparametric framework, inference requires the choice of a number k of upper order statistics to be considered. This is the crux of the matter and there is no definite formula to do it, since a small k leads to high variance and large values of k tend to increase the bias. Several methodologies have emerged in literature, specially concerning the most popular Hill estimator (Hill, 1975). In this work we compare through simulation well-known procedures presented in Drees and Kaufmann (1998), Matthys and Beirlant (2000), Beirlant et al. (2002) and de Sousa and Michailidis (2004), with a heuristic scheme considered in Frahm et al. (2005) within the estimation of a different tail measure but with a similar context. We will see that the new method may be an interesting alternative.