14 resultados para Protein fibrillar aggregates

em Universidade do Minho


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Formation of whey protein isolate protein aggregates under the influence of moderate electric fields upon ohmic heating (OH) has been monitored through evaluation of molecular protein unfolding, loss of its solubility, and aggregation. To shed more light on the microstructure of the protein aggregates produced by OH, samples were assayed by transmission electron microscopy (TEM). Results show that during early steps of an OH thermal treatment, aggregation of whey proteins can be reduced with a concomitant reduction of the heating chargeby reducing the come-up time (CUT) needed to reach a target temperatureand increase of the electric field applied (from 6 to 12 V cm1). Exposure of reactive free thiol groups involved in molecular unfolding of -lactoglobulin (-lg) can be reduced from 10 to 20 %, when a CUT of 10 s is combined with an electric field of 12 V cm1. Kinetic and multivariate analysis evidenced that the presence of an electric field during heating contributes to a change in the amplitude of aggregation, as well as in the shape of the produced aggregates. TEM discloses the appearance of small fibrillar aggregates upon the influence of OH, which have recognized potential in the functionalization of food protein networks. This study demonstrated that OH technology can be used to tailor denaturation and aggregation behavior of whey proteins due to the presence of a constant electric field together with the ability to provide a very fast heating, thus overcoming heat transfer limitations that naturally occur during conventional thermal treatments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reuse of recycled concrete aggregates in new hot-mix asphalt can be a more sustainable method of production, but these mixtures may need a heat treatment before compaction to improve their water sensitivity performance. A direct consequence of this treatment is an increase in the hot-mix asphalt resilient modulus. The aim of this paper is to analyse the effect of ageing on the stiffness of asphalt mixtures with different amounts of recycled concrete aggregates, before and after a heat treatment, which was analysed through the assessment of its bitumen properties. Moreover, this paper also aims to analyse whether the rolling thin-film oven test is able to simulate the ageing effect of the heat treatment. In the laboratory work, a paving grade bitumen B50/70 has been used to produce asphalt mixtures with 0% and 30% recycled concrete aggregates, and the bitumen was later characterised (using penetration, softening point, dynamic viscosity and dynamic shear rheometer tests) in various situations, such as when using virgin bitumen, short-term aged bitumen, aged bitumen after heat treatment (simulated with 4 h of rolling thin-film oven test) and bitumen samples recovered from asphalt mixtures with different production mixes (0% and 30% recycled concrete aggregate) and heat treatment conditions (0 and 4 h of curing time in the oven). Based on the results obtained, it could be concluded that the ageing resulting from the heat treatment is the primary cause of the hot-mix asphalt's increased stiffness, while recycled concrete aggregate content has a small influence. Moreover, it could be concluded that when there is no curing time, the recycled concrete aggregate protects the bitumen against ageing. Additionally, it could be stated that the rolling thin-film test is able to adequately simulate the ageing effect of the heat treatment. Thus, this test is useful for determining the ageing suffered by the bitumen when the recycled concrete aggregate mixture is manufactured using a heat treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nowadays, many P2P applications proliferate in the Internet. The attractiveness of many of these systems relies on the collaborative approach used to exchange large resources without the dependence and associated constraints of centralized approaches where a single server is responsible to handle all the requests from the clients. As consequence, some P2P systems are also interesting and cost-effective approaches to be adopted by content-providers and other Internet players. However, there are several coexistence problems between P2P applications and In- ternet Service Providers (ISPs) due to the unforeseeable behavior of P2P traffic aggregates in ISP infrastructures. In this context, this work proposes a collaborative P2P/ISP system able to underpin the development of novel Traffic Engi- neering (TE) mechanisms contributing for a better coexistence between P2P applications and ISPs. Using the devised system, two TE methods are described being able to estimate and control the impact of P2P traffic aggregates on the ISP network links. One of the TE methods allows that ISP administrators are able to foresee the expected impact that a given P2P swarm will have in the underlying network infrastructure. The other TE method enables the definition of ISP friendly P2P topologies, where specific network links are protected from P2P traffic. As result, the proposed system and associated mechanisms will contribute for improved ISP resource management tasks and to foster the deployment of innovative ISP-friendly systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wool and silk are major protein fiber materials used by the textile industry. Fiber protein structure-function relationships are briefly described here, and the major enzymatic processing routes for textiles and other novel applications are deeply reviewed. Fiber biomodification is described here with various classes of enzymes such as protease, transglutaminase, tyrosinase, and laccase. It is expected that the reader will get a perspective on the research done as a basis for new applications in other areas such as cosmetics and pharma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Gß protein and the TupA Co-Regulator Bind to Protein Kinase A Tpk2 to Act as Antagonistic Molecular Switches of Fungal Morphological Changes

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insoluble and fibrillar forms of a-synuclein are the major components of Lewy bodies, a hallmark of several sporadic and inherited neurodegenerative diseases known as synucleinopathies. a-Synuclein is a natural unfolded and aggregation-prone protein that can be degraded by the ubiquitin-proteasomal system and the lysosomal degradation pathways. a-Synuclein is a target of the main cellular proteolytic systems, but it is also able to alter their function further, contributing to the progression of neurodegeneration. Aging, a major risk for synucleinopathies, is associated with a decrease activity of the proteolytic systems, further aggravating this toxic looping cycle. Here, the current literature on the basic aspects of the routes for a-synuclein clearance, as well as the consequences of the proteolytic systems collapse, will be discussed. Finally, particular focus will be given to the sirtuins's role on proteostasis regulation, since their modulation emerged as a promising therapeutic strategy to rescue cells from a-synuclein toxicity. The controversial reports on the potential role of sirtuins in the degradation of a-synuclein will be discussed. Connection between sirtuins and proteolytic systems is definitely worth of further studies to increase the knowledge that will allow its proper exploration as new avenue to fight synucleinopathies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Free standing films of a genetically engineered silk-elastin-like protein (SELP) were prepared using water and formic acid as solvents. Exposure to methanol-saturated air promoted the formation of aggregated β-strands rendering aqueous insolubility and improved the mechanical properties leading to a 10-fold increase in strain-to-failure. The films were optically clear with resistivity values similar to natural rubber and thermally stable up to 180 °C. Addition of glycerol showed to enhance the flexibility of SELP/glycerol films by interacting with SELP molecules through hydrogen bonding, interpenetrating between the polymer chains and granting more conformational freedom. This detailed characterization provides cues for future and unique applications using SELP based biopolymers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of construction and demolition waste (C&DW) in the construction industry is an important contribution to attain sustainability in the sector. The roads are among the civil engineering works which can use larger quantities of C&DW recycled aggregates. In Portugal, the limit values for the properties of C&DW recycled aggregates that can be used in the roads of Portuguese Road Network are defined by two Laboratório Nacional de Engenharia Civil (LNEC) technical specifications (TS), in accordance to Portuguese Decree-law no. 46/2008 of May 12th. Municipal and rural roads and trenches have specific characteristics that can enable the use of C&DW of lower quality than those required by existing LNEC TS, and even then ensuring an adequate performance. However, given the absence of specific regulation for those applications, the Portuguese Environment Agency requires compliance with the existing LNEC TS, which represents an obstacle to recycling a significant part of the C&DW, in particular at a local government level. This paper presents guidelines for the recycling of C&DW in municipal and rural roads and in trenches, which could be considered in a new forthcoming LNEC TS. In the preparation of the guidelines, the bibliography collected and analysed, the information gathered from the application of C&DW in a municipal and rural roads of a Portuguese municipality and in the roadways of a Portuguese resort, and the results of laboratory tests carried out on samples collected in the Portuguese municipality were taken into consideration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de Doutoramento em Biologia Molecular e Ambiental (área de especialização em Biologia Celular e Saúde).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease (MJD), is an untreatable autosomal dominant neurodegenerative disease, and the most common such inherited ataxia worldwide. The mutation in SCA3 is the expansion of a polymorphic CAG tri-nucleotide repeat sequence in the C-terminal coding region of the ATXN3 gene at chromosomal locus 14q32.1. The mutant ATXN3 protein encoding expanded glutamine (polyQ) sequences interacts with multiple proteins in vivo, and is deposited as aggregates in the SCA3 brain. A large body of literature suggests that the loss of function of the native ATNX3-interacting proteins that are deposited in the polyQ aggregates contributes to cellular toxicity, systemic neurodegeneration and the pathogenic mechanism in SCA3. Nonetheless, a significant understanding of the disease etiology of SCA3, the molecular mechanism by which the polyQ expansions in the mutant ATXN3 induce neurodegeneration in SCA3 has remained elusive. In the present study, we show that the essential DNA strand break repair enzyme PNKP (polynucleotide kinase 3'-phosphatase) interacts with, and is inactivated by, the mutant ATXN3, resulting in inefficient DNA repair, persistent accumulation of DNA damage/strand breaks, and subsequent chronic activation of the DNA damage-response ataxia telangiectasia-mutated (ATM) signaling pathway in SCA3. We report that persistent accumulation of DNA damage/strand breaks and chronic activation of the serine/threonine kinase ATM and the downstream p53 and protein kinase C-d pro-apoptotic pathways trigger neuronal dysfunction and eventually neuronal death in SCA3. Either PNKP overexpression or pharmacological inhibition of ATM dramatically blocked mutant ATXN3-mediated cell death. Discovery of the mechanism by which mutant ATXN3 induces DNA damage and amplifies the pro-death signaling pathways provides a molecular basis for neurodegeneration due to PNKP inactivation in SCA3, and for the first time offers a possible approach to treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de Doutoramento em Ciências da Saúde

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de Doutoramento em Biologia Molecular e Ambiental - Especialidade em Biologia Celular e Saúde

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chitosan coating was applied in Lactoferrin (Lf)-Glycomacropeptide (GMP) nanohydrogels by layer-by-layer coating process. A volume ratio of 0.1 of Lf-GMP nanohydrogels (0.2 mg.mL-1, at pH 5.0) to chitosan (1 mg.mL-1, at pH 3) demonstrated to be the optimal condition to obtain stable nanohydrogels with size of 230 ± 12 nm, a PdI of 0.22 ± 0.02 and a -potential of 30.0 ± 0.15 mV. Transmission electron microscopy (TEM) images showed that the application of chitosan coating in Lf-GMP did not affect the spherical shape of nanohydrogels and confirmed the low aggregation of nanohydrogels in solution. The analysis of chemical interactions between chitosan and Lf-GMP nanohydrogels were performed by Fourier transform infrared spectroscopy (FTIR) and by circular dichroism (CD) that revealed that a specific chemical interaction occurring between functional groups of protein-based nanohydrogels and active groups of the chitosan was established. The effect of chitosan coating on release mechanisms of Lf-GMP nanohydrogels at acid conditions (pH 2, 37 ºC) was evaluated by the encapsulation of a model compound (caffeine) in these systems. Linear Superposition Model was used to fit the experimental data and revealed that Fick and relaxation mechanisms are involved in caffeine release. It was also observed that the Fick contribution increase with the application of chitosan coating. In vitro gastric digestion was performed with Lf-GMP nanohydrogels and Lf-GMP nanohydrogels with chitosan coating and it was observed that the presence of chitosan improve the stability of Lf and GMP (proteins were hydrolysed at a slower rate and were present in solution by longer time). Native electrophoreses revealed that the nanohydrogels without coating remained intact in solution until 15 min and with chitosan coating remained intact until 60 min, during gastric digestion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipid nanoballoons integrating multiple emulsions of the type water-in-oil-in-water enclose, at least in theory, a biomimetic aqueous-core suitable for housing hydrophilic biomolecules such as proteins, peptides and bacteriophage particles. The research effort entertained in this paper reports a full statistical 23x31 factorial design study (three variables at two levels and one variable at three levels) to optimize biomimetic aqueous-core lipid nanoballoons for housing hydrophilic protein entities. The concentrations of protein, lipophilic and hydrophilic emulsifiers, and homogenization speed were set as the four independent variables, whereas the mean particle hydrodynamic size (HS), zeta potential (ZP) and polydispersity index (PI) were set as the dependent variables. The V23x31 factorial design constructed led to optimization of the higher (+1) and lower (-1) levels, with triplicate testing for the central (0) level, thus producing thirty three experiments and leading to selection of the optimized processing parameters as 0.015% (w/w) protein entity, 0.75% (w/w) lipophilic emulsifier (soybean lecithin) and 0.50% (w/w) hydrophilic emulsifier (poloxamer 188). In the present research effort, statistical optimization and production of protein derivatives encompassing full stabilization of their three-dimensional structure, has been attempted via housing said molecular entities within biomimetic aqueous-core lipid nanoballoons integrating a multiple (W/O/W) emulsion.