5 resultados para Primary variables of empowerment
em Universidade do Minho
Resumo:
The reuse of recycled concrete aggregates in new hot-mix asphalt can be a more sustainable method of production, but these mixtures may need a heat treatment before compaction to improve their water sensitivity performance. A direct consequence of this treatment is an increase in the hot-mix asphalt resilient modulus. The aim of this paper is to analyse the effect of ageing on the stiffness of asphalt mixtures with different amounts of recycled concrete aggregates, before and after a heat treatment, which was analysed through the assessment of its bitumen properties. Moreover, this paper also aims to analyse whether the rolling thin-film oven test is able to simulate the ageing effect of the heat treatment. In the laboratory work, a paving grade bitumen B50/70 has been used to produce asphalt mixtures with 0% and 30% recycled concrete aggregates, and the bitumen was later characterised (using penetration, softening point, dynamic viscosity and dynamic shear rheometer tests) in various situations, such as when using virgin bitumen, short-term aged bitumen, aged bitumen after heat treatment (simulated with 4 h of rolling thin-film oven test) and bitumen samples recovered from asphalt mixtures with different production mixes (0% and 30% recycled concrete aggregate) and heat treatment conditions (0 and 4 h of curing time in the oven). Based on the results obtained, it could be concluded that the ageing resulting from the heat treatment is the primary cause of the hot-mix asphalt's increased stiffness, while recycled concrete aggregate content has a small influence. Moreover, it could be concluded that when there is no curing time, the recycled concrete aggregate protects the bitumen against ageing. Additionally, it could be stated that the rolling thin-film test is able to adequately simulate the ageing effect of the heat treatment. Thus, this test is useful for determining the ageing suffered by the bitumen when the recycled concrete aggregate mixture is manufactured using a heat treatment.
Resumo:
Hand gesture recognition for human computer interaction, being a natural way of human computer interaction, is an area of active research in computer vision and machine learning. This is an area with many different possible applications, giving users a simpler and more natural way to communicate with robots/systems interfaces, without the need for extra devices. So, the primary goal of gesture recognition research is to create systems, which can identify specific human gestures and use them to convey information or for device control. For that, vision-based hand gesture interfaces require fast and extremely robust hand detection, and gesture recognition in real time. In this study we try to identify hand features that, isolated, respond better in various situations in human-computer interaction. The extracted features are used to train a set of classifiers with the help of RapidMiner in order to find the best learner. A dataset with our own gesture vocabulary consisted of 10 gestures, recorded from 20 users was created for later processing. Experimental results show that the radial signature and the centroid distance are the features that when used separately obtain better results, with an accuracy of 91% and 90,1% respectively obtained with a Neural Network classifier. These to methods have also the advantage of being simple in terms of computational complexity, which make them good candidates for real-time hand gesture recognition.
Resumo:
Various differential cross-sections are measured in top-quark pair (tt¯) events produced in proton--proton collisions at a centre-of-mass energy of s√=7 TeV at the LHC with the ATLAS detector. These differential cross-sections are presented in a data set corresponding to an integrated luminosity of 4.6 fb−1. The differential cross-sections are presented in terms of kinematic variables of a top-quark proxy referred to as the pseudo-top-quark whose dependence on theoretical models is minimal. The pseudo-top-quark can be defined in terms of either reconstructed detector objects or stable particles in an analogous way. The measurements are performed on tt¯ events in the lepton+jets channel, requiring exactly one charged lepton and at least four jets with at least two of them tagged as originating from a b-quark. The hadronic and leptonic pseudo-top-quarks are defined via the leptonic or hadronic decay mode of the W boson produced by the top-quark decay in events with a single charged lepton.The cross-section is measured as a function of the transverse momentum and rapidity of both the hadronic and leptonic pseudo-top-quark as well as the transverse momentum, rapidity and invariant mass of the pseudo-top-quark pair system. The measurements are corrected for detector effects and are presented within a kinematic range that closely matches the detector acceptance. Differential cross-section measurements of the pseudo-top-quark variables are compared with several Monte Carlo models that implement next-to-leading order or leading-order multi-leg matrix-element calculations.
Resumo:
Early loss of splenic Tfh cells in SIV-infected rhesus macaques
Resumo:
Dissertação de mestrado integrado em Biomedical Engineering Biomaterials, Biomechanics and Rehabilitation