5 resultados para Prediction of Heterogeneous Variables System
em Universidade do Minho
Resumo:
Currently, the quality of the Indonesian national road network is inadequate due to several constraints, including overcapacity and overloaded trucks. The high deterioration rate of the road infrastructure in developing countries along with major budgetary restrictions and high growth in traffic have led to an emerging need for improving the performance of the highway maintenance system. However, the high number of intervening factors and their complex effects require advanced tools to successfully solve this problem. The high learning capabilities of Data Mining (DM) are a powerful solution to this problem. In the past, these tools have been successfully applied to solve complex and multi-dimensional problems in various scientific fields. Therefore, it is expected that DM can be used to analyze the large amount of data regarding the pavement and traffic, identify the relationship between variables, and provide information regarding the prediction of the data. In this paper, we present a new approach to predict the International Roughness Index (IRI) of pavement based on DM techniques. DM was used to analyze the initial IRI data, including age, Equivalent Single Axle Load (ESAL), crack, potholes, rutting, and long cracks. This model was developed and verified using data from an Integrated Indonesia Road Management System (IIRMS) that was measured with the National Association of Australian State Road Authorities (NAASRA) roughness meter. The results of the proposed approach are compared with the IIRMS analytical model adapted to the IRI, and the advantages of the new approach are highlighted. We show that the novel data-driven model is able to learn (with high accuracy) the complex relationships between the IRI and the contributing factors of overloaded trucks
Resumo:
Hospitals are nowadays collecting vast amounts of data related with patient records. All this data hold valuable knowledge that can be used to improve hospital decision making. Data mining techniques aim precisely at the extraction of useful knowledge from raw data. This work describes an implementation of a medical data mining project approach based on the CRISP-DM methodology. Recent real-world data, from 2000 to 2013, were collected from a Portuguese hospital and related with inpatient hospitalization. The goal was to predict generic hospital Length Of Stay based on indicators that are commonly available at the hospitalization process (e.g., gender, age, episode type, medical specialty). At the data preparation stage, the data were cleaned and variables were selected and transformed, leading to 14 inputs. Next, at the modeling stage, a regression approach was adopted, where six learning methods were compared: Average Prediction, Multiple Regression, Decision Tree, Artificial Neural Network ensemble, Support Vector Machine and Random Forest. The best learning model was obtained by the Random Forest method, which presents a high quality coefficient of determination value (0.81). This model was then opened by using a sensitivity analysis procedure that revealed three influential input attributes: the hospital episode type, the physical service where the patient is hospitalized and the associated medical specialty. Such extracted knowledge confirmed that the obtained predictive model is credible and with potential value for supporting decisions of hospital managers.
Resumo:
Customer lifetime value (LTV) enables using client characteristics, such as recency, frequency and monetary (RFM) value, to describe the value of a client through time in terms of profitability. We present the concept of LTV applied to telemarketing for improving the return-on-investment, using a recent (from 2008 to 2013) and real case study of bank campaigns to sell long- term deposits. The goal was to benefit from past contacts history to extract additional knowledge. A total of twelve LTV input variables were tested, un- der a forward selection method and using a realistic rolling windows scheme, highlighting the validity of five new LTV features. The results achieved by our LTV data-driven approach using neural networks allowed an improvement up to 4 pp in the Lift cumulative curve for targeting the deposit subscribers when compared with a baseline model (with no history data). Explanatory knowledge was also extracted from the proposed model, revealing two highly relevant LTV features, the last result of the previous campaign to sell the same product and the frequency of past client successes. The obtained results are particularly valuable for contact center companies, which can improve pre- dictive performance without even having to ask for more information to the companies they serve.
Resumo:
Due to the fact that different injection molding conditions tailor the mechanical response of the thermoplastic material, such effect must be considered earlier in the product development process. The existing approaches implemented in different commercial software solutions are very limited in their capabilities to estimate the influence of processing conditions on the mechanical properties. Thus, the accuracy of predictive simulations could be improved. In this study, we demonstrate how to establish straightforward processing-impact property relationships of talc-filled injection-molded polypropylene disc-shaped parts by assessing the thermomechanical environment (TME). To investigate the relationship between impact properties and the key operative variables (flow rate, melt and mold temperature, and holding pressure), the design of experiments approach was applied to systematically vary the TME of molded samples. The TME is characterized on computer flow simulation outputsanddefined bytwo thermomechanical indices (TMI): the cooling index (CI; associated to the core features) and the thermo-stress index (TSI; related to the skin features). The TMI methodology coupled to an integrated simulation program has been developed as a tool to predict the impact response. The dynamic impact properties (peak force, peak energy, and puncture energy) were evaluated using instrumented falling weight impact tests and were all found to be similarly affected by the imposed TME. The most important molding parameters affecting the impact properties were found to be the processing temperatures (melt andmold). CI revealed greater importance for the impact response than TSI. The developed integrative tool provided truthful predictions for the envisaged impact properties.
Resumo:
The identification of new and druggable targets in bacteria is a critical endeavour in pharmaceutical research of novel antibiotics to fight infectious agents. The rapid emergence of resistant bacteria makes today's antibiotics more and more ineffective, consequently increasing the need for new pharmacological targets and novel classes of antibacterial drugs. A new model that combines the singular value decomposition technique with biological filters comprised of a set of protein properties associated with bacterial drug targets and similarity to protein-coding essential genes of E. coli has been developed to predict potential drug targets in the Enterobacteriaceae family [1]. This model identified 99 potential target proteins amongst the studied bacterial family, exhibiting eight different functions that suggest that the disruption of the activities of these proteins is critical for cells. Out of these candidates, one was selected for target confirmation. To find target modulators, receptor-based pharmacophore hypotheses were built and used in the screening of a virtual library of compounds. Postscreening filters were based on physicochemical and topological similarity to known Gram-negative antibiotics and applied to the retrieved compounds. Screening hits passing all filters were docked into the proteins catalytic groove and 15 of the most promising compounds were purchased from their chemical vendors to be experimentally tested in vitro. To the best of our knowledge, this is the first attempt to rationalize the search of compounds to probe the relevance of this candidate as a new pharmacological target.