62 resultados para Possible solutions
em Universidade do Minho
Resumo:
Tese de Doutoramento Programa Doutoral em Engenharia Electrónica e Computadores
Resumo:
The increase in life expectancy with a decrease in birth rates is contributing to the ageing of the European population. This phenomenon, coupled with greater awareness of the quality of life, the need to have cost-efficient assistive care, the intention of people to live independently in their homes, and the technological developments in recent decades, have contributed to the emergence of the concept of ambient assisted living (AAL). AAL solutions aim to provide healthy and safe ageing to users through promoting independence in performing daily activities and interacting with technology, taking into consideration the deterioration of the users’ capabilities and the reduced costs of the solutions. In this chapter, AAL developments of monitoring activities of daily living (ADLs) and participation in a virtual community with the selected stakeholders are introduced, their roadmap with the expected technological developments are described, and the expected impact of these solutions on the end users of the developed solutions are discussed. This enables a real user guidance structure that represents the different needs and limitations of each user, presenting a highly structured project based on personas and possible solutions for them. The AAL4ALL Ambient Assisted Living for All (ALL4ALL) project is considered here as a case study to analyze and illustrate the ALL concepts discussed in this chapter.
Resumo:
Dissertação de mestrado em Direito da União Europeia
Resumo:
Dissertação de mestrado integrado em Engenharia Mecânica
Resumo:
Dissertação de mestrado integrado em Engenharia Biomédica
Resumo:
Dissertação de mestrado em Tecnologias de Manufatura
Resumo:
Dissertação de mestrado integrado em Engenharia Civil
Resumo:
Since concrete is the most widely utilized construction material, several solutions are currently being developed and investigated for enhancing the sustainability of cementitious materials. One of these solutions is based on producing Recycled Concrete Aggregates (RCA) from existing concrete members resulting by either industrial processes or demolitions of existing structures as a whole. Moreover, waste resulting from industrial processes other than the building construction (i.e., tire recycling, production of steel, powders resulting from other depuration processes) are also being considered as possible low-impact constituents for producing structural concrete and Fiber-Reinforced Cementitious Composites (FRCC). Furthermore, the use of natural fibers is another option for producing environmentally-friendly and cost-effective materials, depending on the local availability of raw materials. To promote the use of concretes partially composed of recycled constituents, their influence on the mechanical and durability performance of these concretes have to be deeply investigated and correlated. This was the main goal of the EnCoRe Project (www.encore-fp7.unisa.it), a EU-funded initiative, whose activities and main findings are summarized in this paper.
Resumo:
Electric Vehicles (EVs) are increasingly used nowadays, and different powertrain solutions can be adopted. This paper describes the control system of an axial flux Permanent Magnet Synchronous Motor (PMSM) for EVs powertrain. It is described the implemented Field Oriented Control (FOC) algorithm and the Space Vector Modulation (SVM) technique. Also, the mathematical model of the PMSM is presented. Both, simulation and experimental, results with different types of mechanical load are presented. The experimental results were obtained using a laboratory test bench. The obtained results are discussed.
Resumo:
This paper proposes a multifunctional converter to interface renewable energy sources (e.g., solar photovoltaic panels) and electric vehicles (EVs) with the power grid in smart grids context. This multifunctional converter allows deliver energy from the solar photovoltaic panels to an EV or to the power grid, and exchange energy in bidirectional mode between the EV and the power grid. Using this multifunctional converter are not required multiple conversion stages, as occurs with the traditional solutions, where are necessary two power converters to integrate the solar photovoltaic system in the power grid and also two power converters to integrate an off-board EV battery charger in the power grid (dc-dc and dc-ac power converters in both cases). Taking into account that the energy provided (or delivered) from the power grid in each moment is function of the EV operation mode and also of the energy produced from the solar photovoltaic system, it is possible to define operation strategies and control algorithms in order to increase the energy efficiency of the global system and to improve the power quality of the electrical system. The proposed multifunctional converter allows the operation in four distinct cases: (a) Transfer of energy from the solar photovoltaic system to the power grid; (b) Transfer of energy from the solar photovoltaic system and from the EV to the power grid; (c) Transfer of energy from the solar photovoltaic system to the EV or to the power grid; (d) Transfer of energy between the EV and the power grid. Along the paper are described the system architecture and the control algorithms, and are also presented some computational simulation results for the four aforementioned cases. It is also presented a comparative analysis between the traditional and the proposed solution in terms of operation efficiency and estimated cost of implementation.
Resumo:
The selective collection of municipal solid waste for recycling is a very complex and expensive process, where a major issue is to perform cost-efficient waste collection routes. Despite the abundance of commercially available software for fleet management, they often lack the capability to deal properly with sequencing problems and dynamic revision of plans and schedules during process execution. Our approach to achieve better solutions for the waste collection process is to model it as a vehicle routing problem, more specifically as a team orienteering problem where capacity constraints on the vehicles are considered, as well as time windows for the waste collection points and for the vehicles. The final model is called capacitated team orienteering problem with double time windows (CTOPdTW).We developed a genetic algorithm to solve routing problems in waste collection modelled as a CTOPdTW. The results achieved suggest possible reductions of logistic costs in selective waste collection.
Resumo:
Using prestressed near surface mounted fibre reinforced polymers (NSM-FRP) is nowadays regaining the attention from the scientific community for the strengthening of existing reinforced concrete (RC) structures. The application of prestressed internal FRP bars and externally bonded prestressed FRPs has already been deeply investigated and revealed considerable benefits when compared to the corresponding passive solutions. A certain amount of prestress provides benefits mainly associated to structural integrity and material durability. Immediately after prestress transference, it is possible to close some of the existing cracks, decreasing the susceptibility of the element to corrosion and, a certain amount of deflection can be recovered due to the creation of a negative curvature. However, very few studies have been carried out to properly assess the preservation of prestress over time. In this context, several reinforced concrete beams strengthened with prestressed NSM carbon FRP (CFRP) laminates were prestressed and monitored for about 40 days. The data obtained from these experimental programs is in this paper presented and analysed. The observed prestress losses were later modelled using finite elements analysis and, although this topic is not addressed in this paper, the obtained results revealed considerable precision. The largest strain losses in the CFRP laminate were found to be mainly located in the extremities of the bonded length, while in the central zone most of the applied pre-strain was retained over time. The highest CFRP strain losses were observed in the first 6 to 12 days after prestress transfer, suggesting that the application of prestressed NSM-FRP will be very effective over time.
Resumo:
Changes in population age structure are a major concern and represent a priority in the agendas and policies of the developed world, which are demanding for renewed models of social and healthcare as well as assistance services to the elderly population. Studies indicate that as far as possible these types of services should desirably be provided at the user’s home, and that ICT-based solutions can have tremendous impact on the delivery of new services. This paper highlight and discusses some of the main results of a project undertaken in a Portuguese Municipality that demonstrates the potential contribution of an e-Marketplace of care and assistance services to the well-being of elderly people. Studies undertaken allowed identifying the main services that should be provided by such e-Marketplace (termed GuiMarket), the relevance that the population grant to this platform and, conversely, the fact that the Digital Divide phenomena influences the potential utilization of this project (and alike projects). The findings support that there is a strong relation between age and qualifications, and between access to ICT and the intended use of GuiMarket.
Resumo:
Acioly, A. S. G., Soares, M. M., & Arezes, P. M. (2015). Possible uses of augmented reality as a tool for guidance of users of packages. Paper presented at the Occupational Safety and Hygiene III - Selected Extended and Revised Contributions from the International Symposium on Safety and Hygiene.
Resumo:
A substantial part of the world building heritage has been performed by earthen building. The durability of this existing heritage and mainly of the new buildings built with earth is particularly conditioned by the erosion caused by water action, especially in countries with high levels of rainfall. This research aims to contribute to the increase of knowledge about the ancient building techniques that provide enhanced durability. It is possible to analyse the ancestral practices used to protect the earth material from the water action in order to understand how the old earthen buildings were preserved over the centuries, resisting to harsh weather conditions. Among these techniques are: the incorporation of biopolymers (such as oils or fats from animal or vegetable origin); the addition of some minerals; and the earth stabilization with lime. However, this knowledge seems to be forgotten, probably due to the prejudice related to earthen constructions, which several times are associated with a poor building. This research also focuses on the study of new methods of earth stabilization with lime and biopolymers, adapting the ancient knowledge to improve the durability related to the water action. Therefore, alternative solutions can be obtained to improve the performance of earthen buildings, mainly the resistance of the material in the presence of water, reducing its permeability to water. In addition, with the proposed solutions it is possible to obtain good levels of water vapour permeability, one of the major advantages of the construction with earth.