17 resultados para Population differentiation
em Universidade do Minho
Resumo:
Tese de Doutoramento em Engenharia de Tecidos, Medicina Regenerativa e Células Estaminais.
Resumo:
The use of stem cells is a promising therapeutic approach for the substantial challenge to regenerate cartilage. Considering the two prerequisites, namely the use of a 3D system to enable the chondrogenic differentiation and growth factors to avoid dedifferentiation, the diffusion efficiency of essential biomolecules is an intrinsic issue. We already proposed a liquified bioencapsulation system containing solid microparticles as cell adhesion sites1. Here, we intend to use the optimized system towards chondrogenic differentiation by encapsulating stem cells and collagenII-TGF-β3 PLLA microparticles. As a proof-of-concept, magnetite-nanoparticles were incorporated into the multilayered membrane. This can be a great advantage after implantation procedures to fixate the capsules in situ with the held of an external magnetic patch and for the follow-up through imaging. Results showed that the production of glycosaminoglycans and the expression of cartilage-relevant markers (collagen II, Sox9, aggrecan, and COMP) increased up to 28 days, while hypertrophic (collagen X) and fibrotic (collagen I) markers were downregulated. The presence of nanofibers in the newly deposited ECM was visualized by SEM, which resembles the collagen fibrils of native cartilage. The presence of the major constituent of cartilage, collagen II, was detected by immunocytochemistry and afranin-O and alcian blue stainings revealed a basophilic ECM deposition, which is characteristic of neocartilage. These findings suggest that the proposed system may provide a suitable environment for chondrogenic differentiation.
Resumo:
Inspired by the native co-existence of multiple cell types and from the concept of deconstructing the stem cell niche, we propose a co-encapsulation strategy within liquified capsules. The present team has already proven the application of liquified capsules as bioencapsulation systems1. Here, we intend to use the optimized system towards osteogenic differentiation. Capsules encapsulating adipose stem cells alone (MONO-capsules) or in co-culture with endothelial cells (CO-capsules) were maintained in endothelial medium with or without osteogenic differentiation factors. The suitability of the capsules for living stem and endothelial cells encapsulation was demonstrated by MTS and DNA assays. The osteogenic differentiation was assessed by quantifying the deposition of calcium and the activity of ALP up to 21 days. CO capsules had an enhanced osteogenic differentiation, even when cultured in the absence of osteogenic factors. Furthermore, osteopontin and CD31 could be detected, which respectively indicate that osteogenic differentiation had occurred and endothelial cells maintained their phenotype. An enhanced osteogenic differentiation by co-encapsulation was also confirmed by the upregulation of osteogenic markers (BMP-2, RUNX2, BSP) while the expression of angiogenic markers (VEGF, vWF, CD31) revealed the presence of endothelial cells. The proposed capsules can also act as a growth factor release system upon implantation, as showed by VEGF and BMP-2 quantification. These findings demonstrate that the co-encapsulation of stem and endothelial cells within liquified injectable capsules provides a promising strategy for bone tissue engineering.
Resumo:
Bioactive glasses, especially silica-based materials, are reported to pres- ent osteoconductive and osteoinductive properties, fundamental char- acteristics in bone regeneration [1,2]. Additionally, dexamethasone (Dex) is one of the bioactive agents able to induce the osteogenic differ- entiation of mesenchymal stem cells by increasing the alkaline phos- phatase activity, and the expression levels of Osteocalcin and Bone Sialoprotein [3]. Herein, we synthesised silica (SiO2) nanoparticles (that present inherent bioactivity and ability to act as a sustained drug delivery system), and coated their surface using poly-L-lysine (PLL) and hyaluronic acid (HA) using the layer-by-layer processing technique. Further on, we studied the influence of these new SiO2-polyelectrolyte coated nanoparticles as Dex sustained delivery systems. The SiO2 nanoparticles were loaded with Dex (SiO2-Dex) and coated with PLL and HA (SiO2-Dex-PLL-HA). Their Dex release profile was evaluated and a more sustained release was obtained with the SiO2-Dex-PLL-HA. All the particles were cultured with human bone marrow-derived mes- enchymal stem cells (hBMSCs) under osteogenic differentiation culture conditions. hBMSCs adhered, proliferated and differentiated towards the osteogenic lineage in the presence of SiO2 (DLS 174nm), SiO2-Dex (DLS 175nm) and SiO2-Dex-PLL-HA (DLS 679nm). The presence of these materials induced the overexpression of osteogenic transcripts, namely of Osteocalcin, Bone Sialoprotein and Runx2. Scanning Elec- tron Microscopy/Electron Dispersive Spectroscopy analysis demon- strated that hBMSCs synthesised calcium phosphates when cultured with SiO2-Dex and SiO2-Dex-PLL-HA nanoparticles. These results indi- cate the potential use of these SiO2-polyelectrolytes coated nanoparti- cles as dexamethasone delivery systems capable of promoting osteogenic differentiation of hBMSCs.
Resumo:
Changes in population age structure are a major concern and represent a priority in the agendas and policies of the developed world, which are demanding for renewed models of social and healthcare as well as assistance services to the elderly population. Studies indicate that as far as possible these types of services should desirably be provided at the user’s home, and that ICT-based solutions can have tremendous impact on the delivery of new services. This paper highlight and discusses some of the main results of a project undertaken in a Portuguese Municipality that demonstrates the potential contribution of an e-Marketplace of care and assistance services to the well-being of elderly people. Studies undertaken allowed identifying the main services that should be provided by such e-Marketplace (termed GuiMarket), the relevance that the population grant to this platform and, conversely, the fact that the Digital Divide phenomena influences the potential utilization of this project (and alike projects). The findings support that there is a strong relation between age and qualifications, and between access to ICT and the intended use of GuiMarket.
Resumo:
Bacteria are central to human health and disease, but existing tools to edit microbial consortia are limited. For example, broad-spectrum antibiotics are unable to precisely manipulate bacterial communities. Bacteriophages can provide highly specific targeting of bacteria, but assembling well-defined phage cocktails solely with natural phages can be a time-, labor- and cost-intensive process. Here, we present a synthetic biology strategy to modulate phage host ranges by engineering phage genomes in Saccharomyces cerevisiae. We used this technology to redirect Escherichia coli phage scaffolds to target pathogenic Yersinia and Klebsiella bacteria, and conversely, Klebsiella phage scaffolds to target E. coli by modular swapping of phage tail components. The synthetic phages achieved efficient killing of their new target bacteria and were used to selectively remove bacteria from multi-species bacterial communities with cocktails based on common viral scaffolds. We envision this approach accelerating phage biology studies and enabling new technologies for bacterial population editing.
Resumo:
Poly(vinylidene fluoride) (PVDF) is a biocompatible material with excellent electroactive properties. Non-electroactive α-PVDF and electroactive β-PVDF were used to investigate the substrate polarization and polarity influence on the focal adhesion size and number as well as on human adipose stem cells (hASCs) differentiation. hASCs were cultured on different PVDF surfaces adsorbed with fibronectin and focal adhesion size and number, total adhesion area, cell size, cell aspect ratio and focal adhesion density were estimated using cells expressing EGFP-vinculin. Osteogenic differentiation was also determined using a quantitative alkaline phosphatase assay. The surface charge of the poled PVDF films (positive or negative) influenced the hydrophobicity of the samples, leading to variations in the conformation of adsorbed extracellular matrix (ECM) proteins, which ultimately modulated the stem cell adhesion on the films and induced their osteogenic differentiation.
Resumo:
This work reports on the influence of the substrate polarization of electroactive β-PVDF on human adipose stem cells (hASCs) differentiation under static and dynamic conditions. hASCs were cultured on different β-PVDF surfaces (non-poled and “poled -”) adsorbed with fibronectin and osteogenic differentiation was determined using a quantitative alkaline phosphatase assay. “Poled -” β-PVDF samples promote higher osteogenic differentiation, which is even higher under dynamic conditions. It is thus demonstrated that electroactive membranes can provide the necessary electromechanical stimuli for the differentiation of specific cells and therefore will support the design of suitable tissue engineering strategies, such as bone tissue engineering.
Resumo:
Published online first in 10 July 2013
Resumo:
Objective: Immunosenescence and cognitive decline are common markers of the aging process. Taking into consideration the heterogeneity observed in aging processes and the recently described link between lymphocytes and cognition, we herein explored the possibility of an association between alterations in lymphocytic populations and cognitive performance. Methods: In a cohort of cognitively healthy adults (n = 114), previously characterized by diverse neurocognitive/psychological performance patterns, detailed peripheral blood immunophenotyping of both the innate and adaptive immune systems was performed by flow cytometry. Results: Better cognitive performance was associated with lower numbers of effector memory CD4(+) T cells and higher numbers of naive CD8(+) T cells and B cells. Furthermore, effector memory CD4(+) T cells were found to be predictors of general and executive function and memory, even when factors known to influence cognitive performance in older individuals (e.g., age, sex, education, and mood) were taken into account. Conclusions: This is the first study in humans associating specific phenotypes of the immune system with distinct cognitive performance in healthy aging.
Resumo:
A high-resolution mtDNA phylogenetic tree allowed us to look backward in time to investigate purifying selection. Purifying selection was very strong in the last 2,500 years, continuously eliminating pathogenic mutations back until the end of the Younger Dryas (∼11,000 years ago), when a large population expansion likely relaxed selection pressure. This was preceded by a phase of stable selection until another relaxation occurred in the out-of-Africa migration. Demography and selection are closely related: expansions led to relaxation of selection and higher pathogenicity mutations significantly decreased the growth of descendants. The only detectible positive selection was the recurrence of highly pathogenic nonsynonymous mutations (m.3394T>C-m.3397A>G-m.3398T>C) at interior branches of the tree, preventing the formation of a dinucleotide STR (TATATA) in the MT-ND1 gene. At the most recent time scale in 124 mother-children transmissions, purifying selection was detectable through the loss of mtDNA variants with high predicted pathogenicity. A few haplogroup-defining sites were also heteroplasmic, agreeing with a significant propensity in 349 positions in the phylogenetic tree to revert back to the ancestral variant. This nonrandom mutation property explains the observation of heteroplasmic mutations at some haplogroup-defining sites in sequencing datasets, which may not indicate poor quality as has been claimed.
Resumo:
The use of biomaterials to direct osteogenic differentiation of human mesenchymal stem cells (hMSCs) in the absence of osteogenic supplements is thought to be part of the next generation of orthopedic implants. We previously engineered surface-roughness gradients of average roughness (Ra) varying from the sub-micron to the micrometer range ( 0.5–4.7 lm), and mean distance between peaks (RSm) gradually varying from 214 lm to 33 lm. Here we have screened the ability of such surface-gradients of polycaprolactone to influence the expression of alkaline phosphatase (ALP), collagen type 1 (COL1) and mineralization by hMSCs cultured in dexamethasone (Dex)-deprived osteogenic induction medium (OIM) and in basal growth medium (BGM). Ra 1.53 lm/RSm 79 lm in Dex-deprived OI medium, and Ra 0.93 lm/RSm 135 lm in BGM consistently showed higher effectiveness at supporting the expression of the osteogenic markers ALP, COL1 and mineralization, compared to the tissue culture polystyrene (TCP) control in complete OIM. The superior effectiveness of specific surface-roughness revealed that this strategy may be used as a compelling alternative to soluble osteogenic inducers in orthopedic applications featuring the clinically relevant biodegradable polymer polycaprolactone.
Resumo:
Tese de Doutoramento em Psicologia (Especialidade de Psicologia Clínica)
Resumo:
Tese de Doutoramento em Medicina.
Resumo:
A new concept of semipermeable reservoirs containing co-cultures of cells and supporting microparticles is presented, inspired by the multi-phenotypic cellular environment of bone. Based on the deconstruction of the â stem cell nicheâ , the developed capsules are designed to drive a self-regulated osteogenesis. PLLA microparticles functionalized with collagen I, and a co-culture of adipose stem (ASCs) and endothelial (ECs) cells are immobilized in spherical liquified capsules. The capsules are coated with multilayers of poly(L-lysine), alginate, and chitosan nano-assembled through layer-by-layer. Capsules encapsulating ASCs alone or in a co-culture with ECs are cultured in endothelial medium with or without osteogenic differentiation factors. Results show that osteogenesis is enhanced by the co-encapsulation, which occurs even in the absence of differentiation factors. These findings are supported by an increased ALP activity and matrix mineralization, osteopontin detection, and the up regulation of BMP-2, RUNX2 and BSP. The liquified co-capsules also act as a VEGF and BMP-2 cytokines release system. The proposed liquified capsules might be a valuable injectable self-regulated system for bone regeneration employing highly translational cell sources.