4 resultados para Phosphorylation sites
em Universidade do Minho
Resumo:
This paper analyzes the safety, environmental and occupational health of workers in the small construction industry in Brazil. In this sector there are still many unsafe practices, which are very common in small work sites. We used a qualitative approach to understand these problems by long interviews with people who work directly in small construction sites, including occupational physicians, civil engineers, safety engineers, safety technicians, general foremen, construction workers, labor unionists and auditors. This paper aims to demonstrate that the "invisibility" of the small sites workers makes them less safe and therefore more prone to accidents, also weakening their health. The results show that small constructions workers are less visible to society and supervision because of their short periods of work. Therefore, they are also uncovered to the rigorous applicability of principles of safety and accident prevention. Thus, it has been seen in this field of work a precarious application of NR - 18, which was specifically made for the construction sites and it needs simplification to meet normative characteristics of small construction sites. In the State of Rio de Janeiro, some laws on small sites were recently created and implemented. This study concludes that the rules to work are not being taken as seriously as the legislation determinates, remaining practically unknown by many professionals, from the plot command, supervisors, engineers, architects and technicians who work on construction sites. This ignorance creates space for the lack of safety and consequently to accidents, leading to by weakness in the workers health. Therefore, the work process needs to be modified, the safety regulation must be disseminated through safer practices, promoting employee health and ensure that the work of small sites can be visible, especially ensuring the construction workers health and safety.
Resumo:
The current study describes the in vitro phosphorylation of a human hair keratin, using protein kinase for the first time. Phosphorylation of keratin was demonstrated by 31P NMR (Nuclear Magnetic Resonance) and Diffuse Reflectance Infrared Fourier Transform (DRIFT) techniques. Phosphorylation induced a 2.5 fold increase of adsorption capacity in the first 10 minutes for cationic moiety like Methylene Blue (MB). Thorough description of MB adsorption process was performed by several isothermal models. Reconstructed fluorescent microscopy images depict distinct amounts of dye bound to the differently treated hair. The results of this work suggest that the enzymatic phosphorylation of keratins might have significant implications in hair shampooing and conditioning, where short application times of cationic components are of prime importance.
Resumo:
The evolution of the construction caused a need to use more effective equipments, capable of meeting the increasingly demanding deadlines for the completion of works. In this context, the safety and efficiency of equipment have become key aspects in order to optimize the execution time of the works, as well as reducing labor costs and loss of materials. With the evolution of construction and construction processes, cranes have come to represent a signal of the construction of buildings, revealing to be, in most of the cases, the main equipment of construction sites. Currently, some engineers revels some apprehension regarding the use and handling of cranes which is natural and acceptable, since an equipment failure can lead to serious or fatal accidents. The factors affecting safety management of the cranes in construction sites were investigated, identified, classified and evaluated according to their degree of importance, through interviews with representatives of the general contractors of a set of selected construction sites.
Resumo:
An overview is given of the recent work on in vitro enzymatic phosphorylation of silk fibroin and human hair keratin. Opposing to many chemical "conventional" approaches, enzymatic phosphorylation is in fact a mild reaction and the treatment falls within "green chemistry" approach. Silk and keratin are not phosphorylated in vivo, but in vitro. This enzyme-driven modification is a major technological breakthrough. Harsh chemical chemicals are avoided, and mild conditions make enzymatic phosphorylation a real "green chemistry" approach. The current communication presents a novel approach stating that enzyme phosphorylation may be used as a tool to modify the surface charge of biocompatible materials such as keratin and silk.