8 resultados para Perinatal asphyxia
em Universidade do Minho
Resumo:
Dissertação de mestrado em Bioinformática
Resumo:
Worldwide, around 9% of the children are born with less than 37 weeks of labour, causing risk to the premature child, whom it is not prepared to develop a number of basic functions that begin soon after the birth. In order to ensure that those risk pregnancies are being properly monitored by the obstetricians in time to avoid those problems, Data Mining (DM) models were induced in this study to predict preterm births in a real environment using data from 3376 patients (women) admitted in the maternal and perinatal care unit of Centro Hospitalar of Oporto. A sensitive metric to predict preterm deliveries was developed, assisting physicians in the decision-making process regarding the patients’ observation. It was possible to obtain promising results, achieving sensitivity and specificity values of 96% and 98%, respectively.
Resumo:
In Maternity Care, a quick decision has to be made about the most suitable delivery type for the current patient. Guidelines are followed by physicians to support that decision; however, those practice recommendations are limited and underused. In the last years, caesarean delivery has been pursued in over 28% of pregnancies, and other operative techniques regarding specific problems have also been excessively employed. This study identifies obstetric and pregnancy factors that can be used to predict the most appropriate delivery technique, through the induction of data mining models using real data gathered in the perinatal and maternal care unit of Centro Hospitalar of Oporto (CHP). Predicting the type of birth envisions high-quality services, increased safety and effectiveness of specific practices to help guide maternity care decisions and facilitate optimal outcomes in mother and child. In this work was possible to acquire good results, achieving sensitivity and specificity values of 90.11% and 80.05%, respectively, providing the CHP with a model capable of correctly identify caesarean sections and vaginal deliveries.
Resumo:
The pathological study of the placenta is of upmost importance in cases of unexplained fetal/perinatal loss and often these carry litigation implications. Integrating pathological findings and the underlying pathophysiological processes, leading to placental lesions, is fundamental for the evaluation of poor fetal and perinatal outcomes and to distinguish from cases of true negligence.
Resumo:
Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Informática Médica)
Resumo:
The Edinburgh Postnatal Depression Scale (EPDS) and the State Anxiety Inventory (STAI-S) are widely used self-report measures that still need to be further validated for the perinatal period. The aim of this study was to examine the screening performance of the EPDS and the STAI-S in detecting depressive and anxiety disorders at pregnancy and postpartum. Women screening positive on EPDS (EPDS ≥ 9) or STAI-S (STAI-S ≥ 45) during pregnancy (n = 90), as well as matched controls (n = 58) were selected from a larger study. At 3 months postpartum, 99 of these women were reassessed. At a second stage, women were administered a clinical interview to establish a DSM-IV-TR diagnosis. Receiver operator characteristics (ROC) analysis yielded areas under the curve higher than .80 and .70 for EPDS and STAI-S, respectively. EPDS and STAI-S optimal cut-offs were found to be lower at postpartum (EDPS = 7; STAI-S = 34) than during pregnancy (EPDS = 9; STAI-S = 40). EPDS and STAI-S are reasonably valid screening tools during pregnancy and the postpartum.
Resumo:
Healthcare organizations often benefit from information technologies as well as embedded decision support systems, which improve the quality of services and help preventing complications and adverse events. In Centro Materno Infantil do Norte (CMIN), the maternal and perinatal care unit of Centro Hospitalar of Oporto (CHP), an intelligent pre-triage system is implemented, aiming to prioritize patients in need of gynaecology and obstetrics care in two classes: urgent and consultation. The system is designed to evade emergency problems such as incorrect triage outcomes and extensive triage waiting times. The current study intends to improve the triage system, and therefore, optimize the patient workflow through the emergency room, by predicting the triage waiting time comprised between the patient triage and their medical admission. For this purpose, data mining (DM) techniques are induced in selected information provided by the information technologies implemented in CMIN. The DM models achieved accuracy values of approximately 94% with a five range target distribution, which not only allow obtaining confident prediction models, but also identify the variables that stand as direct inducers to the triage waiting times.
Resumo:
An unsuitable patient flow as well as prolonged waiting lists in the emergency room of a maternity unit, regarding gynecology and obstetrics care, can affect the mother and child’s health, leading to adverse events and consequences regarding their safety and satisfaction. Predicting the patients’ waiting time in the emergency room is a means to avoid this problem. This study aims to predict the pre-triage waiting time in the emergency care of gynecology and obstetrics of Centro Materno Infantil do Norte (CMIN), the maternal and perinatal care unit of Centro Hospitalar of Oporto, situated in the north of Portugal. Data mining techniques were induced using information collected from the information systems and technologies available in CMIN. The models developed presented good results reaching accuracy and specificity values of approximately 74% and 94%, respectively. Additionally, the number of patients and triage professionals working in the emergency room, as well as some temporal variables were identified as direct enhancers to the pre-triage waiting time. The imp lementation of the attained knowledge in the decision support system and business intelligence platform, deployed in CMIN, leads to the optimization of the patient flow through the emergency room and improving the quality of services.