3 resultados para Pattern recognition, cluster finding, calibration and fitting methods

em Universidade do Minho


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of genome-scale metabolic models has been rapidly increasing in fields such as metabolic engineering. An important part of a metabolic model is the biomass equation since this reaction will ultimately determine the predictive capacity of the model in terms of essentiality and flux distributions. Thus, in order to obtain a reliable metabolic model the biomass precursors and their coefficients must be as precise as possible. Ideally, determination of the biomass composition would be performed experimentally, but when no experimental data are available this is established by approximation to closely related organisms. Computational methods however, can extract some information from the genome such as amino acid and nucleotide compositions. The main objectives of this study were to compare the biomass composition of several organisms and to evaluate how biomass precursor coefficients affected the predictability of several genome-scale metabolic models by comparing predictions with experimental data in literature. For that, the biomass macromolecular composition was experimentally determined and the amino acid composition was both experimentally and computationally estimated for several organisms. Sensitivity analysis studies were also performed with the Escherichia coli iAF1260 metabolic model concerning specific growth rates and flux distributions. The results obtained suggest that the macromolecular composition is conserved among related organisms. Contrasting, experimental data for amino acid composition seem to have no similarities for related organisms. It was also observed that the impact of macromolecular composition on specific growth rates and flux distributions is larger than the impact of amino acid composition, even when data from closely related organisms are used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Usually, data warehousing populating processes are data-oriented workflows composed by dozens of granular tasks that are responsible for the integration of data coming from different data sources. Specific subset of these tasks can be grouped on a collection together with their relationships in order to form higher- level constructs. Increasing task granularity allows for the generalization of processes, simplifying their views and providing methods to carry out expertise to new applications. Well-proven practices can be used to describe general solutions that use basic skeletons configured and instantiated according to a set of specific integration requirements. Patterns can be applied to ETL processes aiming to simplify not only a possible conceptual representation but also to reduce the gap that often exists between two design perspectives. In this paper, we demonstrate the feasibility and effectiveness of an ETL pattern-based approach using task clustering, analyzing a real world ETL scenario through the definitions of two commonly used clusters of tasks: a data lookup cluster and a data conciliation and integration cluster.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent decades, an increased interest has been evidenced in the research on multi-scale hierarchical modelling in the field of mechanics, and also in the field of wood products and timber engineering. One of the main motivations for hierar-chical modelling is to understand how properties, composition and structure at lower scale levels may influence and be used to predict the material properties on a macroscopic and structural engineering scale. This chapter presents the applicability of statistic and probabilistic methods, such as the Maximum Likelihood method and Bayesian methods, in the representation of timber’s mechanical properties and its inference accounting to prior information obtained in different importance scales. These methods allow to analyse distinct timber’s reference properties, such as density, bending stiffness and strength, and hierarchically consider information obtained through different non, semi or destructive tests. The basis and fundaments of the methods are described and also recommendations and limitations are discussed. The methods may be used in several contexts, however require an expert’s knowledge to assess the correct statistic fitting and define the correlation arrangement between properties.