3 resultados para Parallel kinematics

em Universidade do Minho


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Closest Vector Problem (CVP) and the Shortest Vector Problem (SVP) are prime problems in lattice-based cryptanalysis, since they underpin the security of many lattice-based cryptosystems. Despite the importance of these problems, there are only a few CVP-solvers publicly available, and their scalability was never studied. This paper presents a scalable implementation of an enumeration-based CVP-solver for multi-cores, which can be easily adapted to solve the SVP. In particular, it achieves super-linear speedups in some instances on up to 8 cores and almost linear speedups on 16 cores when solving the CVP on a 50-dimensional lattice. Our results show that enumeration-based CVP-solvers can be parallelized as effectively as enumeration-based solvers for the SVP, based on a comparison with a state of the art SVP-solver. In addition, we show that we can optimize the SVP variant of our solver in such a way that it becomes 35%-60% faster than the fastest enumeration-based SVP-solver to date.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of the hip joint formulation on the kinematic response of the model of human gait is investigated throughout this work. To accomplish this goal, the fundamental issues of the modeling process of a planar hip joint under the framework of multibody systems are revisited. In particular, the formulations for the ideal, dry, and lubricated revolute joints are described and utilized for the interaction of femur head inside acetabulum or the hip bone. In this process, the main kinematic and dynamic aspects of hip joints are analyzed. In a simple manner, the forces that are generated during human gait, for both dry and lubricated hip joint models, are computed in terms of the system’s state variables and subsequently introduced into the dynamics equations of motion of the multibody system as external generalized forces. Moreover, a human multibody model is considered, which incorporates the different approaches for the hip articulation, namely ideal joint, dry, and lubricated models. Finally, several computational simulations based on different approaches are performed, and the main results presented and compared to identify differences among the methodologies and procedures adopted in this work. The input conditions to the models correspond to the experimental data capture from an adult male during normal gait. In general, the obtained results in terms of positions do not differ significantly when the different hip joint models are considered. In sharp contrast, the velocity and acceleration plotted vary significantly. The effect of the hip joint modeling approach is clearly measurable and visible in terms of peaks and oscillations of the velocities and accelerations. In general, with the dry hip model, intra-joint force peaks can be observed, which can be associated with the multiple impacts between the femur head and the cup. In turn, when the lubricant is present, the system’s response tends to be smoother due to the damping effects of the synovial fluid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"A workshop within the 19th International Conference on Applications and Theory of Petri Nets - ICATPN’1998"