11 resultados para PROPER EQUATION OF MOTION

em Universidade do Minho


Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Series title: Springerbriefs in applied sciences and technology, ISSN 2191-530X"

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Series title: Springerbriefs in applied sciences and technology, ISSN 2191-530X"

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the behavior of c omplex composite materials using mixing procedures is fundamental in several industrial processes. For instance, polymer composites are usually manufactured using dispersion of fillers in polymer melt matrices. The success of the filler dispersion depends both on the complex flow patterns generated and on the polymer melt rheological behavior. Consequently, the availability of a numerical tool that allow to model both fluid and particle would be very useful to increase the process insight. Nowadays there ar e computational tools that allow modeling the behavior of filled systems, taking into account both the behavior of the fluid (Computational Rheology) and the particles (Discrete Element Method). One example is the DPMFoam solver of the OpenFOAM ® framework where the averaged volume fraction momentum and mass conservation equations are used to describe the fluid (continuous phase) rheology, and the Newton’s second law of motion is used to compute the particles (discrete phase) movement. In this work the refer red solver is extended to take into account the elasticity of the polymer melts for the continuous phase. The solver capabilities will be illustrated by studying the effect of the fluid rheology on the filler dispersion, taking into account different fluid types (generalized Newtonian or viscoelastic) and particles volume fraction and size. The results obtained are used to evaluate the relevance of considering the fluid complex rheology for the prediction of the composites morphology

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the mixing process of complex composite materials is fundamental in several industrial processes. For instance, the dispersion of fillers in polymer melt matrices is commonly employed to manufacture polymer composites, using a twin-screw extruder. The effectiveness of the filler dispersion depends not only on the complex flow patterns generated, but also on the polymer melt rheological behavior. Therefore, the availability of a numerical tool able to predict mixing, taking into account both fluid and particles phases would be very useful to increase the process insight, and thus provide useful guidelines for its optimization. In this work, a new Eulerian-Lagrangian numerical solver is developed OpenFOAM® computational library, and used to better understand the mechanisms determining the dispersion of fillers in polymer matrices. Particular attention will be given to the effect of the rheological model used to represent the fluid behavior, on the level of dispersion obtained. For the Eulerian phase the averaged volume fraction governing equations (conservation of mass and linear momentum) are used to describe the fluid behavior. In the case of the Lagrangian phase, Newton’s second law of motion is used to compute the particles trajectories and velocity. To study the effect of fluid behavior on the filler dispersion, several systems are modeled considering different fluid types (generalized Newtonian or viscoelastic) and particles volume fraction and size. The results obtained are used to correlate the fluid and particle characteristics on the effectiveness of mixing and morphology obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Composite films with filler microparticles of Barium ferrite dispersed within P(VDF-TrFE) as polymeric matrix have been prepared by solvent evaporation. The lowest BaFO content of 1% wt acts as a small defect within the polymeric matrix, reducing the values of the dielectric and mechanical properties of the pure P(VDF-TrFE). For filler contents up to a 20%, the BaFO filler reinforces the matrix and measured properties increase their values. This trend is not followed by the electrical conductivity. We extended the study to fibers composed by BaFe12O19 microparticles in a PVDF matrix. Due to the big size of BaFO particles (1 micron in diameter), proper fabrication of the fiber shaped composites has not been achieved. We found that true BaFO content are always lower than nominal ones. Results are discussed in terms of the influence of size and morphology of the BaFO particles on the initial properties of the polymeric matrix.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese de Doutoramento Ciência e Engenharia de Polímeros e Compósitos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of the hip joint formulation on the kinematic response of the model of human gait is investigated throughout this work. To accomplish this goal, the fundamental issues of the modeling process of a planar hip joint under the framework of multibody systems are revisited. In particular, the formulations for the ideal, dry, and lubricated revolute joints are described and utilized for the interaction of femur head inside acetabulum or the hip bone. In this process, the main kinematic and dynamic aspects of hip joints are analyzed. In a simple manner, the forces that are generated during human gait, for both dry and lubricated hip joint models, are computed in terms of the system’s state variables and subsequently introduced into the dynamics equations of motion of the multibody system as external generalized forces. Moreover, a human multibody model is considered, which incorporates the different approaches for the hip articulation, namely ideal joint, dry, and lubricated models. Finally, several computational simulations based on different approaches are performed, and the main results presented and compared to identify differences among the methodologies and procedures adopted in this work. The input conditions to the models correspond to the experimental data capture from an adult male during normal gait. In general, the obtained results in terms of positions do not differ significantly when the different hip joint models are considered. In sharp contrast, the velocity and acceleration plotted vary significantly. The effect of the hip joint modeling approach is clearly measurable and visible in terms of peaks and oscillations of the velocities and accelerations. In general, with the dry hip model, intra-joint force peaks can be observed, which can be associated with the multiple impacts between the femur head and the cup. In turn, when the lubricant is present, the system’s response tends to be smoother due to the damping effects of the synovial fluid.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Series title: Springerbriefs in applied sciences and technology, ISSN 2191-530X"

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Series title: Springerbriefs in applied sciences and technology, ISSN 2191-530X"

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de mestrado em Ciências da Comunicação (área de especialização em Informação e Jornalismo)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The equivalent annulus width concept is used to characterize a small commercial thermogravitational hermal diffusion column and its validity checked experimentally by separating batchwise in the column mixtures of n-heptanebenzene with different initial concentrations. The equation of Ruppell and Coull was used to analyse the data in the short separation times range and determine the equivalent annulus width. Good agreement was obtained between the experimental and predicted time-separation curves when using the equivalent annulus width value and on averaged value of the thermal diffusion constant. A new method is presented for the simultaneous determination of the equivalent annulus width and the thermal diffusion constant of a binary mixture from a single set of experimental data.