4 resultados para POWER SYSTEM STABILITY
em Universidade do Minho
Bidirectional battery charger with grid-to-vehicle, vehicle-to-grid and vehicle-to-home technologies
Resumo:
This paper presents the development of na on-board bidirectional battery charger for Electric Vehicles (EVs) targeting Grid-to-Vehicle (G2V), Vehicle-to-Grid (V2G), and Vehicle-to-Home (V2H) technologies. During the G2V operation mode the batteries are charged from the power grid with sinusoidal current and unitary power factor. During the V2G operation mode the energy stored in the batteries can be delivered back to the power grid contributing to the power system stability. In the V2H operation mode the energy stored in the batteries can be used to supply home loads during power outages, or to supply loads in places without connection to the power grid. Along the paper the hardware topology of the bidirectional battery charger is presented and the control algorithms are explained. Some considerations about the sizing of the AC side passive filter are taken into account in order to improve the performance in the three operation modes. The adopted topology and control algorithms are accessed through computer simulations and validated by experimental results achieved with a developed laboratory prototype operating in the different scenarios.
Resumo:
Tese de Doutoramento - Programa Doutoral em Engenharia Industrial e Sistemas (PDEIS)
Resumo:
Dissertação de mestrado integrado em Engenharia Mecânica
Resumo:
An empirical system was developed to obtain a quality index for rock slopes in road infrastructures, named Slope Quality Index (SQI), and it was applied to a set of real slopes.The SQI is supported in nine factors affecting slope stability that contemplate the evaluation of different parameters. Consequently, each factor is classified by the degree of importance and influence by assigned weights. These weights were established through a statistical analysis of replies to a survey that was distributed to several experienced professionals in the field. The proposed SQI varies between1 and 5, corresponding to slopes in very good and very bad condition state, respectively. Besides the advantage linked to a quantitative and qualitative evaluation of slopes, theSQI also allows identifying the most critical factors on the slope stability, which is a fundamental issue for an efficient management of the slope network in the road infrastructure, namely in the planning of conservation and maintenance operations.